• Title/Summary/Keyword: Gene regulation

Search Result 2,207, Processing Time 0.03 seconds

Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Sectorization in Cryphonectria parasitica

  • Chun, Jeesun;So, Kum-Kang;Ko, Yo-Han;Kim, Jung-Mi;Kim, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.363-375
    • /
    • 2019
  • Fungal sectorization is a complex trait that is still not fully understood. The unique phenotypic changes in sporadic sectorization in mutants of CpBck1, a mitogen-activated protein kinase kinase kinase (MAPKKK) gene, and CpSlt2, a mitogen-activated protein kinase (MAPK) gene, in the cell wall integrity pathway of the chestnut blight fungus Cryphonectria parasitica have been previously studied. Although several environmental and physiological factors cause this sectoring phenotype, genetic variants can also impact this complex morphogenesis. Therefore, RNA sequencing analysis was employed to identify candidate genes associated with sectorization traits and understand the genetic mechanism of this phenotype. Transcriptomic analysis of CpBck1 and CpSlt2 mutants and their sectored progeny strains revealed a number of differentially expressed genes (DEGs) related to various cellular processes. Approximately 70% of DEGs were common between the wild-type and each of CpBck1 and CpSlt2 mutants, indicating that CpBck1 and CpSlt2 are components of the same MAPK pathway, but each component governs specific sets of genes. Functional description of the DEGs between the parental mutants and their sectored progenies revealed several key pathways, including the biosynthesis of secondary metabolites, translation, amino acid metabolism, and carbohydrate metabolism; among these, pathways for secondary metabolism and translation appeared to be the most common pathway. The results of this comparative study provide a better understanding of the genetic regulation of sector formation and suggest that complex several regulatory pathways result in interplays between secondary metabolites and morphogenesis.

Hsa_Circ_0001947/MiR-661/DOK7 Axis Restrains Non-Small Cell Lung Cancer Development

  • Bao, Yuyan;Yu, Yanjie;Hong, Bing;Lin, Zhenjian;Qi, Guoli;Zhou, Jie;Liu, Kaiping;Zhang, Xiaomin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1508-1518
    • /
    • 2021
  • Hsa_circ_0001947 is associated with multiple cancers, but its function in non-small cell lung cancer (NSCLC) is ambiguous and needs further research. The targeting relationship among circ_0001947, miR-661, and downstream of tyrosine kinase 7 (DOK7) was predicted by database and further verified by dual-luciferase reporter assay, while their expressions in cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). After transfection, cell biological behaviors and expressions of miRNAs, miR-661 and DOK7 were determined by cell function experiments and qRT-PCR, respectively. Circ_0001947 was low-expressed in NSCLC tissues and cells. Circ_0001947 knockdown intensified cell viability and proliferation, induced cell cycle arrest at S phase, suppressed apoptosis and evidently enhanced miR-510, miR-587, miR-661 and miR-942 levels, while circ_0001947 overexpression did the opposite. MiR-661 was a target gene of circ_0001947 that participated in the regulation of circ_0001947 on cell biological behaviors. Furthermore, DOK7, the target gene of miR-661, partly participated in the regulation of miR-661 on cell viability. Hsa_circ_0001947 acts as a sponge of miR-661 to repress NSCLC development by elevating the expression of DOK7.

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.98-116
    • /
    • 2024
  • Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Activation of Barley S-Adenosylmethionine Synthetase1 Gene Promoter in Response to Phytohormones and Abiotic Stresses

  • Kim, Jae-Yoon;Kim, Dae-Yeon;Jung, Je-Hyeong;Hong, Min-Jeong;Heo, Hwa-Young;Johnson, Jerry W.;Kim, Tae-Ho;Seo, Yong-Weon
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Barley S-adenosylmethionine synthetase1 gene, which was differentially expressed in seed development of extra early barley, was regulated by the phytohormones and abiotic stresses. In order to identify the regulation regions which were involved in transcriptional control of the phytohormones and abiotic stresses, we isolated 1459 bp fragment of HvSAMS1 gene promoter using genome walking strategy and deletion series were constructed. Deleted upstream fragments(-1459, -1223, -999, -766, -545, -301 bp) were fused to the GUS reporter gene and evaluated via Agrobacterium-mediated transient expression assay. Increased GUS activity of HvSMAS1 promoter -301/GUS construct under each of NaCl, $GA_3$, ABA and ethylene application was found. However, GUS activity was negligible in the leaves transformed with the HvSMAS1 promoter(-1459, -1223, -999, -766 and -545)/GUS constructs. No significant induction of GUS activity was observed for the ethionine and spermidine treatments. In order to locate promoter sequence of the HvSAMS1 gene that was critical for the activation of gene expression, deletion and addition promoter derivatives(+, includes 43 bp of 5' ORF) of the HvSAMS1 gene fused to the GUS reporter gene were applied. The tobacco leaves which harbored the additional HvSAMS1 promoter(-1459+, -1459 to -546, -545+ and -301+)/GUS construct did not significantly induce GUS activity as compared to the HvSAMS1 promoter(-1459, -545 and -301)/GUS constructs under each of NaCl, ABA and $GA_3$ treatment. However, the GUS activity was high in the tobacco leaves which harboring the -211 to -141 regions of the HvSAMS1 promoter. This result suggested that HvSAMS1 gene expression might be regulated by this region(from -211 to -141).

  • PDF

In Silico Analysis of Gene Function and Transcriptional Regulators Associated with Endoplasmic Recticulum (ER) Stress (Endoplasmic recticulum stress와 관련된 유전자기능과 전사조절인자의 In silico 분석)

  • Kim, Tae-Min;Yeo, Ji-Young;Park, Chan-Sun;Rhee, Moon-Soo;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2009
  • It has been postulated that endoplasmic (ER) stress is involved in the development of several diseases. However, the detailed molecular mechanisms have not been fully understood. Therefore, we characterized a genetic network of genes induced by ER stress using cDNA microarray and gene set expression coherence analysis (GSECA), and identified gene function as well as several transcription regulators associated with ER stress. We analyzed time-dependent gene expression profiles in thapsigargin-treated Sk-Hep1 using an oligonucleotide expression chip, and then selected functional gene sets with significantly high expression coherence which was processed into functional clusters according to the expression similarities. The functions related to sugar binding, lysosome, ribosomal protein, ER lumen, and ER to golgi transport increased, whereas the functions with mRNA processing, DNA replication, DNA repair, cell cycle, electron transport chain and helicase activity decreased. Furthermore, functional clusters were investigated for the enrichment of regulatory motifs using GSECA, and several transcriptional regulators associated with regulation of ER-induced gene expression were found.

A study on the osteoblast differentiation using osteocalcin gene promoter controlling luciferase expression (리포터유전자를 이용한 조골세포 분화정도에 관한 연구)

  • Kim, Kyoung-Hwa;Park, Yoon-Jeong;Lee, Yong-Moo;Han, Jung-Suk;Lee, Dong-Soo;Lee, Seung-Jin;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.839-847
    • /
    • 2006
  • The aim of this study is to monitor reporter gene expression under osteocalcin gene promoter, using a real-time molecular imaging system, as tool to investigate osteoblast differentiation. The promoter region of mouse osteocalcin gene 2 (mOG2), the best-characterized osteoblast-specific gene, was inserted in promoterless luciferase reporter vector. Expression of reporter gene was confirmed and relationship between the reporter gene expression and osteoblastic differentiation was evaluated. Gene expression according to osteoblstic differentiation on biomaterials, utilizing a real-time molecular imaging system, was monitored. Luciferase was expressed at the only cells transduced with pGL4/mOGP and the level of expression was statistically higher at cells cultured in mineralization medium than cells in growth medium. CCCD camera detected the luciferase expression and was visible differentiation-dependent intensity of luminescence. The cells produced osteocalcin with time-dependent increment in BMP-2 treated cells and there was difference between BMP-2 treated cells and untreated cells at 14days. There was difference at the level of luciferase expression under pGL4/mOGP between BMP-2 treated cells and untreated cells at 3days. CCCD camera detected the luciferase expression at cells transduced with pGL4/mOGP on Ti disc and was visible differentiation-dependent intensity of luminescence This study shows that 1) expression of luciferase is regulated by the mouse OC promoter, 2) the CCCD detection system is a reliable quantitative gene detection tool for the osteoblast differentiation, 3) the dynamics of mouse OC promoter regulation during osteoblast differentiation is achieved in real time and quantitatively on biomaterial. The present system is a very reliable system for monitoring of osteoblast differentiation in real time and may be used for monitoring the effects of growth factors, drug, cytokines and biomaterials on osteoblast differentiation in animal.

Expression, Characterization and Regulation of a Saccharomyces cerevisiae Monothiol Glutaredoxin (Grx6) Gene in Schizosaccharomyces pombe

  • Lee, Jae-Hoon;Kim, Kyunghoon;Park, Eun-Hee;Ahn, Kisup;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.316-322
    • /
    • 2007
  • Glutaredoxins (Grxs), also known as thioltransferases (TTases), are thiol oxidoreductases that regulate cellular redox state in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, Grx1 and 2 are cytosolic dithiol Grxs, while Grx3, 4 and 5 are monothiol Grxs. A gene encoding a new monothiol Grx, Grx6, was cloned from the genomic DNA of S. cerevisiae by PCR. Its DNA sequence contains 1,080 bp, and encodes a putative protein of 203 amino acid residues containing Cys-Phe-Tyr-Ser at the active site. Grx6 is similar to other monothiol Grxs in the same organism and to Grx3 in the fission yeast Schizosaccharomyces pombe. and its predicted three-dimensional structure resembles that of S. pombe Grx3. S. pombe cells harboring plasmid pFGRX6 containing the Grx6 gene had about 1.3-fold elevated Grx activity in the exponential phase, and grew better than the control cells under some stressful conditions. Synthesis of ${\beta}$-galactosidase from a Grx6-lacZ fusion gene in S. pombe was enhanced by potassium chloride, aluminum chloride and heat ($37^{\circ}C$) treatment. S. pombe cells harboring plasmid pFGRX6 had elevated ROS levels whereas S. pombe cells harboring extra copies of Grx3 had reduced ROS levels.

Endo-sulfatase Sulf-1 Protein Expression is Down-regulated in Gastric Cancer

  • Gopal, Gopisetty;Shirley, Sundersingh;Raja, Uthandaraman Mahalinga;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.641-646
    • /
    • 2012
  • In our recent report on gene expression in gastric cancer we identified the endo-sulfatase Sulf-1 gene to be up-regulated in gastric tumors relative to apparently normal (AN), and paired normal (PN) gastric tissue samples. In the present report we investigate the protein expression levels of Sulf-1 gene in gastric tumors, AN and PN samples using tissue microarray (TMA) and immunohistochemistry. Expression data was collected from two sets of TMA's containing replicate sections of tissue samples. Scoring data from TMA set-1 revealed a significant difference in Sulf-1 immunoreactivity between tumors and "normals" (PN and AN) (p-value = 0.001928). Also, Sulf-1 expression in tumors was also significantly different from either PN (p-value = 0.019) or AN (p-value = 0.006) samples. Similar results were obtained from analysis of scoring data from the second set of arrays. Comparison of mRNA expression and protein expression in gastric tumor tissues revealed that in 6/20 (30%) tumor samples showed up-regulated protein expression concordant with over-expression of mRNA. However, a discord with mRNA being over-expressed relative to down regulated protein expression was observed in majority 14/20 (70%) of tumor samples. Our study indicates down regulation of Sulf-1 protein expression in gastric tumors relative to PN and AN samples which is discordant with mRNA over-expression seen in tumors.

Human transcription factor YY1 could upregulate the HIV-1 gene expression

  • Yu, Kyung Lee;Jung, Yu Mi;Park, Seong Hyun;Lee, Seong Deok;You, Ji Chang
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.248-253
    • /
    • 2020
  • Gene expression in HIV-1 is regulated by the promoters in 5' long-terminal repeat (LTR) element, which contain multiple DNA regulatory elements that serve as binding sites for cellular transcription factors. YY1 could repress HIV-1 gene expression and latent infection. Here, however, we observed that virus production can be increased by YY1 over-expression and decreased under YY1 depleted condition by siRNA treatment. To identify functional domain(s) of YY1 activation, we constructed a number of YY1 truncated mutants. Our data show that full-length YY1 enhances the viral transcription both through U3 and U3RU5 promoters. Moreover, the C-terminal region (296-414 residues) of YY1 is responsible for the transcriptional upregulation, which could be enhanced further in the presence of the viral Tat protein. The central domain of YY1 (155-295 residues) does not affect LTR activity but has a negative effect on HIV-1 gene expression. Taken together, our study shows that YY1 could act as a transcriptional activator in HIV-1 replication, at least in the early stages of infection.

Analysis of opposing histone modifications H3K4me3 and H3K27me3 reveals candidate diagnostic biomarkers for TNBC and gene set prediction combination

  • Park, Hyoung-Min;Kim, HuiSu;Lee, Kang-Hoon;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.266-271
    • /
    • 2020
  • Breast cancer encompasses a major portion of human cancers and must be carefully monitored for appropriate diagnoses and treatments. Among the many types of breast cancers, triple negative breast cancer (TNBC) has the worst prognosis and the least cases reported. To gain a better understanding and a more decisive precursor for TNBC, two major histone modifications, an activating modification H3K4me3 and a repressive modification H3K27me3, were analyzed using data from normal breast cell lines against TNBC cell lines. The combination of these two histone markers on the gene promoter regions showed a great correlation with gene expression. A list of signature genes was defined as active (highly enriched H3K4me3), including NOVA1, NAT8L, and MMP16, and repressive genes (highly enriched H3K27me3), IRX2 and ADRB2, according to the distribution of these histone modifications on the promoter regions. To further enhance the investigation, potential candidates were also compared with other types of breast cancer to identify signs specific to TNBC. RNA-seq data was implemented to confirm and verify gene regulation governed by the histone modifications. Combinations of the biomarkers based on H3K4me3 and H3K27me3 showed the diagnostic value AUC 93.28% with P-value of 1.16e-226. The results of this study suggest that histone modification analysis of opposing histone modifications may be valuable toward developing biomarkers and targets for TNBC.