• Title/Summary/Keyword: Gene expressions

Search Result 726, Processing Time 0.027 seconds

Classification of the Efficacy of Herbal Medicine Alterations in Neuronal Hypoxia Models through Analysis of Gene Expression

  • Hwang, Joo-Won;Shin, Gil-Cho;Moon, Il-Su
    • The Journal of Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.36-51
    • /
    • 2014
  • Objectives: cDNA microarray is an effective method to snapshot gene expression. Functional clustering of gene expressions can identify herbal medicine mechanisms. Much microarray data is available for various herbal medicines. This study compares regulated genes with herbal medicines to evaluate the nature of the drugs. Methods: Published microarray data were collected. Total RNAs were prepared from dissociated hippocampal dissociate cultures which were given hypoxic shock in the presence of each herbal medicine. Up- or downregulated genes higher than Global M value 0.5 were selected, clustered in functional groups, and compared with various herbal treatments. Results: 1. Akt2 was upregulated by Acorus gramineus SOLAND, Arisaema amurense var. serratum $N_{AKAI}$ and Coptis chinensis $F_{RANCH}$, and they belong to Araceae herb. 2. Nf-${\kappa}b1$, Cd5, $Gn{\gamma}7$ and Sgne1 were upregulated by Arisaema amurense var. serratum $N_{AKAI}$, Coptis chinensis $F_{RANCH}$ and Rheum coreanum $N_{AKAI}$. 3. Woohwangcheongsim-won, Sohaphyang-won and Scutellaria baicalensis $G_{EORGI}$ downregulated Scp2 and upregulated Tsc2. Woohwangcheongsim-won and Sohaphyang-won upregulated Hba1 and downregulated Myf6. 4. Sohaphyang-won and Scutellaria baicalensis $G_{EORGI}$ downregulated Slc12a1. 5. Woohwangcheongsim-won and Arisaema amurense var. serratum $N_{AKAI}$ upregulated $Rar{\alpha}$, Woohwangcheongsim-won and Coptis chinensis $F_{RANCH}$ downregulated Rab5a and $Pdgfr{\alpha}$, and Woohwangcheongsim-won and Rheum coreanum $N_{AKAI}$ upregulated $Plc{\gamma}1$ and downregulated Pla2g1b and Slc10a1. Conclusions: By clustering microarray, genes are commonly identified to be either up- or downregulated. These results will provide new information to understand the efficacy of herbal medicines and to classify them at the molecular level.

Expression of Coat Color Associated Genes in Korean Brindle Cattle by Microarray Analysis

  • Lee, Hae-Lee;Park, Jae-Hee;Kim, Jong Gug
    • Journal of Embryo Transfer
    • /
    • v.30 no.2
    • /
    • pp.99-107
    • /
    • 2015
  • The aim of the present study was to identify coat color associated genes that are differentially expressed in mature Korean brindle cattle (KBC) with different coat colors and in Hanwoo cows. KBC calves, before and after coat color appearance, were included. Total cellular RNA was isolated from the tail hair cells and used for microarray. The number of expressed coat color associated genes/probes was 5813 in mature KBC and Hanwoo cows. Among the expressed coat color associated genes/probes, 167 genes were the coat color associated genes listed in the Gene card database and 125 genes were the pigment and melanocyte genes listed in the Gene ontology_bovine database. There were 23 genes/probes commonly listed in both databases and their expressions were further studied. Out of the 23 genes/probes, MLPH, PMEL, TYR and TYRP1 genes were expressed at least two fold higher (p<0.01) levels in KBC with brindle color than either Hanwoo or KBC with brown color. TYRP1 expression was 22.96 or 19.89 fold higher (p<0.01) in KBC with brindle color than either Hanwoo or KBC with brown color, respectively, which was the biggest fold difference. The hierarchical clustering analysis indicated that MLPH, PMEL, TYR and TYRP1 were the highly expressed genes in mature cattle. There were only a few genes differentially expressed after coat color appearance in KBC calves. Studies on the regulation and mechanism of gene expression of highly expressed genes would be next steps to better understand coat color determination and to improve brindle coat color appearance in KBC.

Effects of Angiotensin Converting Enzyme Inhibition on Gene Expression of the Renin-Angiotensin System in Rats

  • Lee, Young-Rae;Lee, Mi-Young;Kim, Woon-Jung;Lee, Won-Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.771-778
    • /
    • 1998
  • To investigate interaction of angiotensin converting enzyme (ACE) inhibitor with local tissue renin- angiotensin system (RAS), changes in gene expression of the RAS components in various tissues in response to chronic administration of an ACE inhibitor, enalapril, were examined in Sprague-Dawley male rats. Enalapril was administered in their drinking water $(3{\sim}4\;mg/day)$ over 8 wk. Plasma and renal ACE activity increased significantly after 4 and 8 wk of enalapril treatment. Renin levels of the plasma and kidney of the enalapril-treated rats markedly increased after 4 wk and decreased thereafter, but still remained significantly higher than those of control rats. Kidney mRNA levels of renin markedly increased after 4 and 8 wk of enalapril treatment, but those of angiotensinogen and ANG II-receptor subtypes, $AT_{1A}$ and $AT_{1B}$, did not change significantly. The liver expressed genes for renin, angiotensinogen and $AT_{1A}$ receptor subtype, but $AT_{1B}$ receptor subtype mRNA was not detectable by RT-PCR. None of mRNA for these RAS components in the liver changed significantly by enalapril treatment. The hypothalamus showed mRNA expressions of renin, angiotensinogen, $AT_{1A}$ and $AT_{1B}$ receptor subtypes. $AT_{1A}$ receptor subtype mRNA was more abundant than $AT_{1B}$ receptor subtype in the hypothalamus as shown in the kidney. However, gene expression of the RAS components remained unchanged during 8-wk treatment of enalapril. In the present study, chronic ACE inhibition increased plasma and renal levels of ACE and renin, but did not affect mRNA levels of other RAS components such as angiotensinogen, ANG II receptor subtypes in the kidney. Gene levels of the RAS components in the liver and hypothalamus were not altered by chronic treatment of enalapril. These results suggest the differential expression of the RAS components in response to enalapril, and localized action and some degree of tissue specificity of enalapril.

  • PDF

Effects of Samjunghwan on the $IL-1{\beta}$ Gene Expression in the Macrophage (삼정환(三精丸)이 대식세포의 면역반응에서 유도되는 $IL-1{\beta}$ 유전자의 발현에 미치는 영향)

  • Kim, Se-Yoon;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.228-236
    • /
    • 2006
  • Objectives : Macrophage has an important innate defense role in the immune system. When we are infected with pathogens, macrophage ingests them through phagocytosis or endocytosis, and then secretes many cytokines, such as IL-1, IL-6 and $TGF{\alpha}$, which are regulators of immune responses. The aim of this study is to determine how Samjunghwan effects the expression of cytokine and other immune-related genes in macrophages. Methods : Cells were treated directly with Samjunghwan and/or LPS at regular intervals. Total RNA of cells was isolated using TRIzol reagent, and the changes in cytokine gene expressions were investigated using RT-PCR, western blot and ELISA. Results : $IL-1{\alpha},\;IL-1{\beta}$ and COX-2 genes were inducibly expressed specifically by Samjunghwan in macrophage. Especially, $IL-1{\beta}$ gene was induced most strongly by treatment with Samjunghwan. Over time, treatment with Samjunghwan showed that the expression levels of $IL-1{\alpha}\;and\;$IL-1{\beta}$ genes increased from 1 to 4h, and then decreased from 4 to ISh. However, the expression level of COX-2 gene increased continuously up to 11h. $IL-1{\alpha},\;IL-1{\beta}$ and COX-2 genes were expressed synergistically by a simultaneous treatment of both Samjunghwan and LPS in macrophages. Secretion levels of translated $IL-1{\beta}$ increased continuously up to 11h. Conclusions : Though this study is only a start in the investigation of the efficasy of Samjunghwan, these results suggest that Samjunghwan has positive effects on immune responses.

  • PDF

Difference of Gene Expression in Venous Malformation (정맥기형 환자에 있어서의 유전자 발현 차이)

  • Kim, Taek Kyun;Oh, Eun Jung;Cho, Byung Chae;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.34 no.6
    • /
    • pp.671-678
    • /
    • 2007
  • Purpose: Venous malformation(VM) which often causes pain and discomfort is the most common type of vascular malformations. Although it is presented with disfigured appearance and associated soft tissue or skeletal hypertrophy, the molecular bases of VMs are poorly understood. Differentially expressed genes(DEGs) of VMs were investigated to illuminate the molecular mechanism of the disease entity. Methods: Gene expressions of VM patients' subcutaneous tissue were studied in comparison with normal persons' by $GeneFishing^{TM}$ technique using the annealing control primers (ACPs) to identify DEGs. Candidate genes were sequenced and screened by basic local alignment search tool (BLAST) afterwards. Results: Among seventy DEGs identified, forty DEGs which had shown significantly different expression pattern were sequenced. Twenty eight out of 40 were up-regulated while 12 were down-regulated. BLAST searches revealed that 37 were known genes and 3 were unknown genes. Many genes were involved in the differentiation and remodeling of smooth muscle cells, opposed to the previous hypothesis that a lot of angiogenetic genes would be involved. Furthermore, several transcription factors and related genes, as well as cell signaling and metabolism regulators, were up regulated. Conclusion: It suggests that analysis of DEGs in VMs provide basic knowledge about its pathophysiology. and new therapeutic approaches.

THE CHANGE OF THE TEMPOROMANDIBULAR JOINT AFTER EXPERIMENTAL DISTRACTION OF MANDIBULAR RAMUS IN RABBIT (가토에서 하악골 신장술이 악관절에 미치는 영향)

  • Lim, Seung-Kyu;Kim, Chul-Hwan;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.543-549
    • /
    • 2008
  • Distraction osteogenesis is a commonly used technique for mandibular lengthening, but changes in the temporomandibular joint(TMJ) have not been well documented. The TMJ is one of the most complex joint in the body and is composed of a fibrous surface layer, a proliferative zone, hypertrophic cartilage, and bone. The shape and role of the TMJ change and modify during a person's life-time. Possible complications that can arise after mandibular distraction include failure of the formation, failure of callus, infection, disturbance of TMJ and of occlusion. However, there are only a few reports on changes in the TMJ as a result of distraction osteogenesis. Hence, the goal of this study was to evaluate the change of the TMJ after experimental distraction of mandibular ramus in rabbit. We studied histological changes of mandibular condyle, articular disk and retrodiscal tissue, and also examined the collagen I gene expression and MMP-1 gene expression. The results were as follows. 1. In the histological staining, experimental condylar surface showed more thick fibrous articular layer and proliferative layer, compared with the control condyle and experimental articular disc showed thick and dense collagen fibers compared with the control disc. 2. In the collagen I and MMP-1 gene RT-PCR analysis, experimental discs showed increased collagen I expression compared with the control disc, while MMP-1 gene expression was decreased compared with the control disc. The retrodiscal tissue was almost equal expressions of the collagen I and MMP-1 genes compared with the control retrodiscal tissue. These findings suggest that histological and biomolecular changes occur in condyles and discs after unilateral mandibular distraction osteogenesis.

What is Epigenetics? -Focusing on Basic Concepts and Mechanisms- (최근 보건의료분야에서 활발하게 연구되고 있는 "Epigenetics"란 무엇인가? -기본개념 및 기전을 중심으로-)

  • Lee, Sun-Dong;Park, Sung-Kyun;Ko, Seong-Gyu;Shin, Heon-Tae;Kim, Myung-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • The individual differences in disease development and susceptibility have been researched primarily on the subject of genes, environment or the interaction between genes and the environment respectively. However, there have been limitations in explaining complex diseases, and the differences in health and diseases in monozygotic and dizygotic twins. Fortunately, thanks to active research on the relationship between genes and the environment, and epigenetics, there has been much progress in the understanding of body's reactions and changes. Epigenetics is referred to as a study of gene expression through the interactions of DNA methylation, chromatin's histone and the change of structure in tail, RNA editing without any change in DNA sequence. In this paper, we introduce the basic concepts and mechanisms of epigenetics. The result of the epigenetics is heritable ; can regulate gene expressions ; is reversible ; and has many variable forms depending on cell types. The influences of epigenetics occur throughout life, but it is mainly determined in utero during early pregnancies. Diseases occur or the risk rises if these influences continue after birth until adult life when problems occur in excess/lack of nutrition, environmental plasticity, or already inputted data. Therefore, there is a need for change and innovation, especially in interest and investment in health education for young women near pregnancies and correct treatment of epigenetic-related diseases.

An inhibitory effect of tumor necrosis factor-alpha antagonist to gene expression in monocrotaline-induced pulmonary hypertensive rats model

  • Kwon, Jung Hyun;Kim, Kwan Chang;Cho, Min-Sun;Kim, Hae Soon;Sohn, Sejung;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.3
    • /
    • pp.116-124
    • /
    • 2013
  • Purpose: Tumor necrosis factor (TNF)-${\alpha}$ is thought to contribute to pulmonary hypertension. We aimed to investigate the effect of infliximab (TNF-${\alpha}$ antagonist) treatment on pathologic findings and gene expression in a monocrotaline-induced pulmonary hypertension rat model. Methods: Six-week-old male Sprague-Dawley rats were allocated to 3 groups: control (C), single subcutaneous injection of normal saline (0.1 mL/kg); monocrotaline (M), single subcutaneous injection of monocrotaline (60 mg/kg); and monocrotaline + infliximab (M+I), single subcutaneous injection of monocrotaline plus single subcutaneous injection of infliximab (5 mg/kg). The rats were sacrificed after 1, 5, 7, 14, or 28 days. We examined changes in pathology and gene expression levels of TNF-${\alpha}$, endothelin-1 (ET-1), endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS), matrix metalloproteinase (MMP) 2, and tissue inhibitor of matrix metalloproteinase (TIMP). Results: The increase in medial wall thickness of the pulmonary arteriole in the M+I group was significantly lower than that in the M group on day 7 after infliximab treatment (P<0.05). The number of intraacinar muscular arteries in the M+I group was lower than that in the M group on days 14 and 28 (P<0.05). Expression levels of TNF-${\alpha}$, ET-1, ERA, and MMP2 were significantly lower in the M+I group than in the M group on day 5, whereas eNOS and TIMP expressions were late in the M group (day 28). Conclusion: Infliximab administration induced early changes in pathological findings and expression levels of TNF-${\alpha}$, and MMP2 in a monocrotaline-induced pulmonary hypertension rat model.

Effect of Hemorrhage on mRNA Expressions of Renin, Angiotensinogen and $AT_1$ Receptors in Rat Central and Peripheral Tissues

  • Lee, Mi-Kyung;Jo, Hak-Ryul;Kim, Kyung-Soon;Yang, Eun-Kyoung;Lee, Won-Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.151-159
    • /
    • 1997
  • In an attempt to investigate whether hemorrhage affects the gene expression of the renin-angioteusin system (RAS) components in the brain and peripheral angiotensin-generating tissues, changes in mRNA levels of the RAS components in response to hemorrhage were measured in conscious unrestrained rats. Wistar rats were bled at a rate of 3 ml/kg/min for 5 min, and then decapitated 7 h after hemorrhage. Levels of mRNA for renin, angiotensinogen and angiotensin $II-AT_1$ receptor subtypes ($AT_{1A}$ and $AT_{1B}$) were determined with the methods of northern blot and reverse transcriptase-polymerase chain reaction (RT-PCR). Hemorrhage produced a profound hypotension with tachycardia, but blood pressure and heart rate recovered close to the basal level at 7 h. Plasma and renal renin levels were significantly increased at 7 h. Hemorrhage induced rapid upregulation of gene expression of both $AT_{1A}$ and $AT_{1B}$ receptor subtypes in the brainstem and hypothalamus, downregulation of them in the adrenal gland and liver. However, renin mRNA level increased in the brainstem, decreased in the liver, but was not changed in the hypothalamus, kidney and adrenals after hemorrhage. Angiotensinogen mRNA level was not significantly changed in any of the tissue except a slight increase in the liver. The kidney and liver did not show any significant change in gene expression of the RAS components. These results suggest that gene expression of the RAS in central and peripheral tissues are, at least in part, under independent control and the local RAS in each organ plays specific physiologic role.

  • PDF

Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells (저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과)

  • Kwag, J.H.;Jeon, O.H.;Kang, D.Y.;Ryu, H.H.;Kim, K.H.;Jung, B.J.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.