• Title/Summary/Keyword: Gene duplication

Search Result 69, Processing Time 0.025 seconds

FLT3-ITD Mutations in Acute Myeloid Leukemia Patients in Northeast Thailand

  • Kumsaen, Piyawan;Fucharoen, Goonnapa;Sirijerachai, Chittima;Chainansamit, Su-on;Wisanuyothin, Nittaya;Kuwatjanakul, Pichayanan;Wiangnon, Surapon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4395-4399
    • /
    • 2016
  • The FLT3-ITD mutation is one of the most frequent genetic abnormalities in acute myeloid leukemia (AML) where it is associated with a poor prognosis. The FLT3-ITD mutation could, therefore, be a potential molecular prognostic marker important for risk-stratified treatment options. We amplified the FLT3 gene at exon 14 and 15 in 52 AML patients (aged between 2 months and 74 years) from 4 referral centers (a university hospital and 3 regional hospitals in Northeast Thailand), using a simple PCR method. FLT3-ITD mutations were found in 10 patients (19.2%), being more common in adults than in children (21.1% vs. 14.3%) and more prevalent in patients with acute promyelocytic leukemia (AML-M3) than AML-non M3 (4 of 10 AML-M3 vs. 6 of 42 AML-non M3 patients). Duplication sequences varied in size-between 27 and 171 nucleotides (median=63.5) and in their location. FLT3-ITD mutations with common duplication sequences accounted for a significant percentage in AML patients in northeastern Thailand. This simple PCR method is feasible for routine laboratory practice and these data could help tailor use of the national protocol for AML.

Magnetic resonance imaging and spectroscopic analysis in 5 cases of Pelizaeus-Merzbacher disease: metabolic abnormalities as diagnostic tools

  • Lee, Eun;Yum, Mi-Sun;Choi, Hae-Won;Yoo, Han-Wook;You, Su Jeong;Lee, Eun-Hye;Ko, Tae-Sung
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.10
    • /
    • pp.397-402
    • /
    • 2012
  • Pelizaeus-Merzbacher disease (PMD) is a rare, X-linked recessive disorder characterized by dysmyelination in the central nervous system. PMD results from deletion, mutation, or duplication of the proteolipid protein gene (PLP1) located at Xq22, leading to the failure of axon myelination by oligodendrocytes in the central nervous system. PMD may be suspected when there are clinical manifestations such as nystagmus, developmental delays, and spasticity, and genetic analysis can confirm the diagnosis. Further diagnostic manifestations of the disease include a lack of myelination on brain magnetic resonance (MR) imaging and aberrant N-acetyl aspartate (NAA) and choline concentrations that reflect axonal and myelination abnormalities on phroton MR spectroscopy. We report 5 cases of PMD (in 1 girl and 4 boys). PLP1 duplication was detected in 2 patients. Brain MR analyses and MR spectroscopy were performed for all the patients. The brain MR images showed white matter abnormalities typical of PMD, and the MR spectroscopic images showed diverse patterns of NAA, creatinine, and choline concentrations. We propose that MR spectroscopic analysis of metabolic alterations can aid the PMD diagnosis and can contribute to a better understanding of the pathogenesis of the disease.

Novel rearrangements in the mitochondrial genomes of the Ceramiales (Rhodophyta) and evolutionary implications

  • Min Ho Seo;Shin Chan Kang;Kyeong Mi Kim;Min Seok Kwak;Jihoon Jo;Han-Gu Choi;Ga Hun Boo;Hwan Su Yoon
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.253-264
    • /
    • 2023
  • The Ceramiales is the most diverse and species-rich group (2,669 spp.) of red algae, and it is widely distributed from tropical to polar oceans. Mitochondrial genomes (mitogenomes) and other genes have contributed to our knowledge regarding the classification and phylogeny of this diverse red algal group; however, the mitogenome architecture remains understudied. Here, we compared 42 mitogenomes, including 19 newly generated in this study, to expand our knowledge. The number of genes in mitogenome varied from 43 to 68 due to gene duplication. The mitogenome architecture was also variable, categorized into four types (A-D): type A = ancestral type with a basic composition; type B = those with inverse transpositions; type C = those with inverted duplications; and type D = those with both inversion and duplication. The palindromic and inverted repeats were consistently found in flanking regions of the rearrangement, especially near the cob and nad6 genes. The three rearranged mitogenome architectures (types B, C, D) are the first report of these in red algae. Phylogenetic analyses of 23 protein-coding genes supported the current familial classification of the Ceramiales, implying that the diversity of mitogenome architecture preceded the phylogenetic relationships. Our study suggests that palindromic and inverted repeats may drive mitogenome architectural variation.

Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris (Schauer) Rchb.f. (Orchidaceae)

  • Himani, Himani;Ramkumar, Thakku R.;Tyagi, Shivi;Sharma, Himanshu;Upadhyay, Santosh K.;Sembi, Jaspreet K.
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.255-273
    • /
    • 2019
  • Orchids are indispensable to the floriculture industry due to their unique floral organization. The flowers have two outer whorls of tepals including a lip (labellum), and two inner whorls, pollinia and gynostemiun (column). The floral organization and development is controlled at the molecular level, mainly by the MADS-box gene family, comprising homeotic genes divided into type I and type II groups. The type I group has four sub-groups, Mα, Mβ, Mγ, and Mδ, playing roles in seed, embryo, and female reproductive organ development; the type II group genes form classes A, B, C, D, and E, which are a part of the MIKCC subgroup with specific roles in florigenesis and organization. The coordinated functioning of these classes regulates the development of various floral whorls. The availability of genome and transcriptome sequence data for Phalaenopsis equestris offers an opportunity to validate the ABCDE model of flower development. Hence, this study sought to characterize the MADS-box gene family and elucidate of the ABCDE model. A total of 48 identified MADS-box proteins, including 20 type I [Mα (12), Mγ (8)] and 28 type II [MIKCC (27), MIKC*(1)] members, were characterized for physico-chemical features and domains and motifs organization. The exon-intron distribution and the upstream cis-regulatory elements in the promoter regions of MADS-box genes were also analysed. The discrete pace of duplication events in type I and type II genes suggested differential evolutionary constraints between groups. The correlation of spatio-temporal expression pattern with the presence of specific cis-regulatory elements and putative protein-protein interaction within the different classes of MADS-box gene family endorse the ABCDE model of floral development.

Characterisation and Clinical Significance of FLT3-ITD and non-ITD in Acute Myeloid Leukaemia Patients in Kelantan, Northeast Peninsular Malaysia

  • Yunus, Noraini Mat;Johan, Muhammad Farid;Al-Jamal, Hamid Ali Nagi;Husin, Azlan;Hussein, Abdul Rahim;Hassan, Rosline
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4869-4872
    • /
    • 2015
  • Background: Mutations of the FMS-like tyrosine kinase-3 (FLT3) receptor gene may promote proliferation via activation of multiple signaling pathways. FLT3-internal tandem duplication (FLT3-ITD) is the most common gene alteration found in patients diagnosed with acute myeloid leukaemia (AML) and has been associated with poor prognosis. Materials and Methods: We performed mutational analysis of exons 14-15 and 20 of the FLT3 gene in 54 AML patients using PCR-CSGE (conformational sensitive gel electrophoresis) followed by sequencing analysis to characterise FLT3 mutations in adult patients diagnosed with AML at Hospital USM, Kelantan, Northeast Peninsular Malaysia. Results: FLT3 exon 14-15 mutations were identified in 7 of 54 patients (13%) whereas no mutation was found in FLT3 exon 20. Six ITDs and one non-ITD mutation were found in exon 14 of the juxtamembrane (JM) domain of FLT3. FLT3-ITD mutations were associated with a significantly higher blast percentage (p-value = 0.008) and white blood cell count (p-value = 0.023) but there was no significant difference in median overall survival time for FLT3-ITD+/FLT3-ITD- within 2 years (p-value = 0.374). Conclusions: The incidence of FLT3-ITD in AML patients in this particular region of Malaysia is low compared to the Western world and has a significant association with WBC and blast percentage.

Genomic Sequence Analysis and Organization of BmKαTx11 and BmKαTx15 from Buthus martensii Karsch: Molecular Evolution of α-toxin genes

  • Xu, Xiuling;Cao, Zhijian;Sheng, Jiqun;Wu, Wenlan;Luo, Feng;Sha, Yonggang;Mao, Xin;Liu, Hui;Jiang, Dahe;Li, Wenxin
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • Based on the reported cDNA sequences of $BmK{\alpha}Txs$, the genes encoding toxin $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$ were amplified by PCR from the Chinese scorpion Buthus martensii Karsch genomic DNA employing synthetic oligonucleotides. Sequences analysis of nucleotide showed that an intron about 500 bp length interrupts signal peptide coding regions of $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$. Using cDNA sequence of $BmK{\alpha}Tx11$ as probe, southern hybridization of BmK genome total DNA was performed. The result indicates that $BmK{\alpha}Tx11$ is multicopy genes or belongs to multiple gene family with high homology genes. The similarity of $BmK{\alpha}$-toxin gene sequences and southern hybridization revealed the evolution trace of $BmK{\alpha}$-toxins: $BmK{\alpha}$-toxin genes evolve from a common progenitor, and the genes diversity is associated with a process of locus duplication and gene divergence.

Complete Mitochondrial Genome of a Troglobite Millipede Antrokoreana gracilipes (Diplopoda, Juliformia, Julida), and Juliformian Phylogeny

  • Woo, Hyung-Jik;Lee, Yong-Seok;Park, Shin-Ju;Lim, Jong-Tae;Jang, Kuem-Hee;Choi, Eun-Hwa;Choi, Yong-Gun;Hwang, Ui Wook
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.182-191
    • /
    • 2007
  • The complete mitochondrial genome of a troglobite millipede Antrokoreana gracilipes (Verhoeff, 1938) (Dipolopoda, Juliformia, Julida) was sequenced and characterized. The genome (14,747 bp) contains 37 genes (2 ribosomal RNA genes, 22 transfer RNA genes and 13 protein-encoding genes) and two large non-coding regions (225 bp and 31 bp), as previously reported for two diplopods, Narceus annularus (order Spirobolida) and Thyropygus sp. (order Spirostreptida). The A + T content of the genome is 62.1%, and four tRNAs ($tRNA^{Ser(AGN)}$, $tRNA^{Cys}$, $tRNA^{Ile}$ and $tRNA^{Met}$) have unusual and unstable secondary structures. Whereas Narceus and Thyropygus have identical gene arrangements, the $tRNA^{Thr}$ and $tRNA^{Trp}$ of Antrokoreana differ from them in their orientations and/or positions. This suggests that the Spirobolida and Spirostreptida are more closely related to each other than to the Dipolopoda. Three scenarios are proposed to account for the unique gene arrangement of Antrokoreana. The data also imply that the Duplication and Nonrandom Loss (DNL) model is applicable to the order Julida. Bayesian inference (BI) and maximum likelihood (ML) analyses using amino acid sequences deduced from the 12 mitochondrial protein-encoding genes (excluding ATP8) support the view that the three juliformian members are monophyletic (BI 100%; ML 100%), that Thyropygus (Spirostreptida) and Narceus (Spirobolida) are clustered together (BI 100%; ML 83%), and that Antrokoreana (Julida) is a sister of the two. However, due to conflict with previous reports using cladistic approaches based on morphological characteristics, further studies are needed to confirm the close relationship between Spirostreptida and Spirobolida.

Transcription Factor for Gene Function Analysis in Maize (옥수수 유전자 기능 분석을 위한 전사인자의 이해)

  • Moon, Jun-Cheol;Kim, Jae Yoon;Baek, Seong-Bum;Kwon, Young-Up;Song, Kitae;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.263-281
    • /
    • 2014
  • Transcription factors are essential for the regulation of gene expression in plant. They are binding to either enhancer or promoter region of DNA adjacent to the gene and are related to basal transcription regulation, differential enhancement of transcription, development, response to intercellular signals or environment, and cell cycle control. The mechanism in controlling gene expression of transcription can be understood through the assessment of the complete sequence for the maize genome. It is possible that the maize genome encodes 4,000 or more transcription factors because it has undergone whole duplication in the past. Previously, several transcription factors of maize have been characterized. In this review article, the transcription factors were selected using Pfam database, including many family members in comparison with other family and listed as follows: ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, and WRKY family. For analyzing motifs, each amino acid sequence has been aligned with ClustalW and the conserved sequence was shown by sequence logo. This review article will contribute to further study of molecular biological analysis and breeding using the transcription factor of maize as a strategy for selecting target gene.

Structural Similarity and Expression Differences of Two Pj-Vg Genes from the Pandalus Shrimp Pandalopsis japonica

  • Jeon, Jeong-Min;Kim, Bo-Kwang;Kim, Young-Ji;Kim, Hyun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Vitellogenin (Vg) is the precursor of vitellin (Vn), which is the major yolk protein in nearly all oviparous species, including fish, amphibians, reptiles, and most invertebrates. It is one of the most important factors during reproduction, and numerous studies have shown that Vg genes are markers of the reproductive cycle and effecter genes induced by endocrine-disrupting chemicals (EDCs). Previously, we isolated two distinct cDNAs encoding vitellogenin homologs Pj-Vg1 and Pj-Vg2 from Pandalus shrimp Pandalopsis japonica. In this study, full-length genomic sequences of Pj-Vg1 and Pj-Vg2 were determined using a PCR-based genome walking strategy. Isolated Pj-Vg1 and Pj-Vg2 genes were 11,910 and 11,850 bp long, respectively. Both Pj-Vg genes had 15 exons and 14 introns, and the splicing sites were also the same, suggesting that they arose via gene duplication. The similar structural characteristics of decapod Vg genes suggest that they are all orthologs that evolved from the same ancestral gene. Analysis of Pj-Vg1 and Pj-Vg2 expression revealed that the relative copy numbers of Pj-Vg1 and Pj-Vg2 were similar in the hepatopancreas, whereas Pj-Vg2 transcripts were also detected in the ovary. Expression of both Pj-Vg genes was induced in hepatopancreas of mature individuals, whereas only Pj-Vg2 transcripts were upregulated in the ovaries from mature animals, suggesting that both Pj-Vgs are important for oocyte development. A strong positive correlation was found between Pj-Vg1 and Pj-Vg2 transcripts in the same individual, indicating they are under the same control mechanisms. Additionally, a positive correlation was found between ovarian and hepatopancreatic Pj-Vg2 transcripts, suggesting that its dual expression is regulated by similar physiological conditions. Knowledge of the similarities and differences between the two vitellogenin-like genes, Pj-Vg1 and Pj-Vg2, would help us to understand their roles in reproduction and other physiological effects.

Three New Loci of Insertion Element IS1112 in Chinese Strains of Xanthomonas oryzae pv. oryzae

  • Xie, Jiajian;Wang, Xifeng;Li, Feiwu;Peng, Yufa;Zhou, Guanghe
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.219-226
    • /
    • 2007
  • Insertion sequence IS1112 is a repetitive element with a relatively high number of copies in Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice (Oryza sativa L.). Three new loci of IS1112 were identified in seven Chinese strains of Xoo using a single oligonucleotide primer J3; 5'-GCTCA GGTCAGGTGGCCTGG-3' by insertion-sequence-based polymerase chain reaction (IS-PCR). Among the three new loci of IS1112, two were located in the open-reading frame region of genes fhuA and cirA, which encode TonB-dependent receptors, and the third in ISXo2, another type of insertion sequence in Xoo genome. Three variants of IS1112 were identified in those three loci based on their sequence similarities: two were identical to IS1112a and IS1112b, reported in strain PXO86 from the Philippines, while the third was a new member of IS1112, defined as IS1112d. Inserting IS1112 in gene fhuA caused three bases, GGT, to be duplicated at the target site, but inserting it in gene cirA did not cause any duplication in the target site. The diversity of IS1112 sequence and insertion loci in Xoo genome and their potential effects are discussed.