Browse > Article
http://dx.doi.org/10.5010/JPB.2019.46.4.255

Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris (Schauer) Rchb.f. (Orchidaceae)  

Himani, Himani (Department of Botany, Panjab University)
Ramkumar, Thakku R. (Department of Botany, Panjab University)
Tyagi, Shivi (Department of Botany, Panjab University)
Sharma, Himanshu (Department of Botany, Panjab University)
Upadhyay, Santosh K. (Department of Botany, Panjab University)
Sembi, Jaspreet K. (Department of Botany, Panjab University)
Publication Information
Journal of Plant Biotechnology / v.46, no.4, 2019 , pp. 255-273 More about this Journal
Abstract
Orchids are indispensable to the floriculture industry due to their unique floral organization. The flowers have two outer whorls of tepals including a lip (labellum), and two inner whorls, pollinia and gynostemiun (column). The floral organization and development is controlled at the molecular level, mainly by the MADS-box gene family, comprising homeotic genes divided into type I and type II groups. The type I group has four sub-groups, Mα, Mβ, Mγ, and Mδ, playing roles in seed, embryo, and female reproductive organ development; the type II group genes form classes A, B, C, D, and E, which are a part of the MIKCC subgroup with specific roles in florigenesis and organization. The coordinated functioning of these classes regulates the development of various floral whorls. The availability of genome and transcriptome sequence data for Phalaenopsis equestris offers an opportunity to validate the ABCDE model of flower development. Hence, this study sought to characterize the MADS-box gene family and elucidate of the ABCDE model. A total of 48 identified MADS-box proteins, including 20 type I [Mα (12), Mγ (8)] and 28 type II [MIKCC (27), MIKC*(1)] members, were characterized for physico-chemical features and domains and motifs organization. The exon-intron distribution and the upstream cis-regulatory elements in the promoter regions of MADS-box genes were also analysed. The discrete pace of duplication events in type I and type II genes suggested differential evolutionary constraints between groups. The correlation of spatio-temporal expression pattern with the presence of specific cis-regulatory elements and putative protein-protein interaction within the different classes of MADS-box gene family endorse the ABCDE model of floral development.
Keywords
MADS-box genes; Phalaenopsis equestris; Characterization; Expression; Flowering; ABCDE model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Folter S de, Immink RGH, Kieffer M, et al. (2005) Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell Online 17:1424-1433   DOI
2 Fornara F, Parenicova L, Falasca G, et al. (2004) Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS Box Genes. Plant Physiol 135:2207-2219   DOI
3 Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG (2005) Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 222:730-742   DOI
4 Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19:801-14   DOI
5 Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO J. 21:4327-37   DOI
6 Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D Class MADS Box Genes from Two Monocots, Orchid (Oncidium Gower Ramsey) and Lily (Lilium longiflorum), Exhibit Different Effects on Floral Transition and Formation in Arabidopsis thaliana. Plant Cell Physiol. 51:102
7 Hsu HF, Hsu WH, Lee YI, et al. (2015) Model for perianth formation in orchids. Nature Plants 1:15046   DOI
8 Davies B, Egea-Cortines M, Andrade Silva E de, Saedler H, Sommer H (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15:4330-43   DOI
9 Immink RG, Tonaco IA, Folter S de, et al. (2009) SEPALLATA3:the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10:R24   DOI
10 Hu L, Liu S, Somers DJ (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245-256   DOI
11 Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr. Opin. Genet. Dev. 15:454-460   DOI
12 Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant cell 2:741-53   DOI
13 Lu ZX, Wu M, Loh CS, Yeong CY, Goh CJ (1993) Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. Plant Mol. Biol. 23:901-904   DOI
14 Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification:brave new whorls. Trends Plant Sci. 10:427-435   DOI
15 Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant cell 23:865-72   DOI
16 Ohmori S, Kimizu M, Sugita M, et al. (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant cell 21: 3008-25   DOI
17 Mondragon-Palomino M, Theißen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. Plant J. 66:1008-1019   DOI
18 Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc. Natl. Acad. Sci. 101:1910-1915   DOI
19 Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989-1003   DOI
20 Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35-39   DOI
21 Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant physiol. 123:1325-36   DOI
22 Zhang GQ, Liu KW, Li Z, et al. (2017) The Apostasia genome and the evolution of orchids. Nature Publishing Group 549
23 Zhang GQ, Xu Q, Bian C, et al. (2016) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029   DOI
24 Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51:51-59   DOI
25 Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q (2006) Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol. Genet. Genomics 276:334-350   DOI
26 Zhao Y, Li X, Chen W, et al. (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell, Tissue Organ Cult. 105:159-173   DOI
27 Cai J, Liu X, Vanneste K, et al. (2014) The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47:65-72   DOI
28 Boss PK, Sensi E, Hua C, Davies C, Thomas MR (2002) Cloning and characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Sci 162:887-895   DOI
29 Bouyer D, Roudier F, Heese M, et al. (2011) Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. (GP Copenhaver, Ed.). PLoS Genet. 7:e1002014   DOI
30 Bowman JL, Smyth DR, Meyerowitzt EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1-20   DOI
31 Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four Orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS Box Genes Show Novel Expression Patterns and Cause Different Effects on Floral Transition and Formation in Arabidopsis thaliana. Plant Cell Physiol. 50:1425-1438   DOI
32 Chang YY, Kao NH, Li JY, et al. (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant physiol. 152:837-53   DOI
33 Chen YY, Lee PF, Hsiao YY, et al. (2012) C- and D-class MADS-Box Genes from Phalaenopsis equestris (Orchidaceae) Display Functions in Gynostemium and Ovule Development. Plant Cell Physiol. 53:1053-1067   DOI
34 Duan W, Song X, Liu T, et al. (2015) Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). Mol. Genet. Genomics 290:239-255
35 De Bodt S, Raes J, Van de Peer Y, Thei$\ss$en G (2003) And then there were many: MADS goes genomic. Trends Plant Sci. 8:475-483   DOI
36 Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine. Plant physiol. 149:354-369   DOI
37 Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991-1002   DOI
38 Eckardt NA (2003) MADS Monsters: Controlling Floral Organ Identity. PLANT CELL ONLINE 15:803-805   DOI
39 Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18:5370-9   DOI
40 Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31-37   DOI
41 Fan CM, Wang X, Wang YW et al. (2013) Genome-Wide Expression Analysis of Soybean MADS Genes Showing Potential Function in the Seed Development. (T Zhang, Ed.). PLoS ONE 8:e62288   DOI
42 Fischer A, Baum N, Saedler H, Thei$\ss$en G (1995) Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res. 23:1901-1911   DOI
43 Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, et al.(2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46: 1125-1139   DOI
44 Shimeld SM (1999) Gene function, gene networks and the fate of duplicated genes. Semin. Cell Dev. Biol. 10:549-553   DOI
45 Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43:484-516   DOI
46 Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469-71   DOI
47 Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z (2015) Genome-wide identification and analysis of the MADS-box gene family in apple. Gene 555:277-290   DOI
48 Tsai WC, Kuoh CS, Chuang MH, Chen WH, et al. (2004) Four DEF-Like MADS Box Genes Displayed Distinct Floral Morphogenetic Roles in Phalaenopsis Orchid. Plant Cell Physiol. 45:831-844   DOI
49 Wang SY, Lee PF, Lee YI, et al. (2011) Duplicated C-Class MADS-Box Genes Reveal Distinct Roles in Gynostemium Development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol. 52:563-577   DOI
50 Wei B, Zhang RZ, Guo JJ, et al. (2014) Genome-Wide Analysis of the MADS-Box Gene Family in Brachypodium distachyon. (S Lin, Ed.). PLoS ONE 9:e84781   DOI
51 Wells CE, Vendramin E, Jimenez Tarodo S, Verde I, Bielenberg DG (2015) A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol. 15:41   DOI
52 Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54-68   DOI
53 Alvarez-Buylla ER, Pelaz S, Liljegren SJ, et al. (2000a) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. U. S. A. 97:5328-33   DOI
54 Zobell O, Faigl W, Saedler H, Munster T (2010) MIKC* MADS-Box Proteins: Conserved Regulators of the Gametophytic Generation of Land Plants. Mol. Biol. Evol. 27:1201-1211   DOI
55 Aceto S, Gaudio L (2011) The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Curr Genomics 12:342-356   DOI
56 Acri-Nunes-Miranda R, Mondragon-Palomino M (2014) Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front. Plant sci 5:76   DOI
57 Adamczyk BJ, Fernandez DE (2009) MIKC* MADS Domain Heterodimers Are Required for Pollen Maturation and Tube Growth in Arabidopsis. PLANT Physiol. 149:1713-1723   DOI
58 Alvarez-Buylla ER, Liljegren SJ, Pelaz S, et al. (2000b) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 24:457-66   DOI
59 Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci. 1:228-232   DOI
60 Arora R, Agarwal P, Ray S, et al. (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242   DOI
61 Bemer M, Wolters-Arts M, Grossniklaus U, Angenent GC (2008) The MADS Domain Protein DIANA Acts Together with AGAMOUS-LIKE80 to Specify the Central Cell in Arabidopsis Ovules. Plant Cell Online 20:2088-2101   DOI
62 Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765-83   DOI
63 Parenicova L, Folter S de, Kieffer M, et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant cell 15:1538-51   DOI
64 Passmore S, Maine GT, Elble R, Christ C, Tye B-K (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT${\alpha}$ cells. J Mol. Biol. 204:593-606   DOI
65 Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203   DOI
66 Jofuku KD, Boer BG den, Montagu M Van, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225   DOI
67 Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant cell 20:635-47   DOI
68 Li C, Wang Y, Xu L, et al. (2016) Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. Front. Plant Sci. 07:1390
69 Lin CS, Hsu CT, Liao DC, et al. (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol. J.14:284-298   DOI
70 Liu C, Chen H, Er HL, et al. (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481-1491   DOI
71 Mondragon-Palomino M, Nter Thei$\ss$en G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany 104:583-594   DOI
72 Masiero S, Colombo L, Grini PE, Schnittger A, et al. (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant cell 23: 865-872   DOI
73 Meyerowitz E, Bowman J, Brockman L (1991) A genetic and molecular model for flower development in Arabidopsis thaliana. Dev. Suppl. I 157-161
74 Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant cell 11:949-56   DOI
75 Mondragon-Palomino M, Thei$\ss$en G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci. 13:51-59   DOI
76 Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol. Chem. 378:1079-101
77 Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, et al. (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1:255-266   DOI
78 Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006) AGL80 Is Required for Central Cell and Endosperm Development in Arabidopsis. Plant Cell Online 18:1862-1872   DOI
79 Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. U. S. A. 93:4793-8   DOI
80 Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. The Plant journal: for cell and molecular biology 29:183-91   DOI
81 Sharma A, Shumayla, Tyagi S, Alok A, Singh K, Upadhyay SK (2019) Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. Plant Science 290 https://doi.org/10.1016/j.plantsci.2019.110317
82 Sommer H, Beltran JP, Huijser P, et al. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9:605-13   DOI
83 Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur. J. Biochem. 229:1-13   DOI
84 Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol. Biol. Rep. 40:3901-3911   DOI
85 Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB (2006) Cloning and transcription analysis of an AGAMOUS-and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366:266-274   DOI
86 Song IJ, Nakamura T, Fukuda T, et al. (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev. Genes Evol. 216:301-313   DOI
87 Southerton SG, Marshall H, Mouradov A, Teasdale RD (1998) Eucalypt MADS-Box Genes Expressed in Developing Flowers. Plant Physiol. 118:365-372   DOI
88 Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, et al. (2008) An AGAMOUS-Related MADS-Box Gene, XAL1 (AGL12), Regulates Root Meristem Cell Proliferation and Flowering Transition in Arabidopsis. Plant physiol 146:1182-1192   DOI
89 Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85   DOI
90 Theissen G, Becker A, Rosa A Di, et al. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42:115-49   DOI
91 Yan L, Wang X, Liu H, et al. (2015) The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Mol. Plant 8:922-934   DOI