Complete Mitochondrial Genome of a Troglobite Millipede Antrokoreana gracilipes (Diplopoda, Juliformia, Julida), and Juliformian Phylogeny

  • Woo, Hyung-Jik (Department of Biology, Teachers College, Kyungpook National University) ;
  • Lee, Yong-Seok (Department of Biology, Teachers College, Kyungpook National University) ;
  • Park, Shin-Ju (Department of Biology, Teachers College, Kyungpook National University) ;
  • Lim, Jong-Tae (Department of Biology, Teachers College, Kyungpook National University) ;
  • Jang, Kuem-Hee (Department of Biology, Teachers College, Kyungpook National University) ;
  • Choi, Eun-Hwa (Department of Biology, Teachers College, Kyungpook National University) ;
  • Choi, Yong-Gun (The Korean Institute of Biospeleology) ;
  • Hwang, Ui Wook (Department of Biology, Teachers College, Kyungpook National University)
  • Received : 2006.11.21
  • Accepted : 2007.01.06
  • Published : 2007.04.30

Abstract

The complete mitochondrial genome of a troglobite millipede Antrokoreana gracilipes (Verhoeff, 1938) (Dipolopoda, Juliformia, Julida) was sequenced and characterized. The genome (14,747 bp) contains 37 genes (2 ribosomal RNA genes, 22 transfer RNA genes and 13 protein-encoding genes) and two large non-coding regions (225 bp and 31 bp), as previously reported for two diplopods, Narceus annularus (order Spirobolida) and Thyropygus sp. (order Spirostreptida). The A + T content of the genome is 62.1%, and four tRNAs ($tRNA^{Ser(AGN)}$, $tRNA^{Cys}$, $tRNA^{Ile}$ and $tRNA^{Met}$) have unusual and unstable secondary structures. Whereas Narceus and Thyropygus have identical gene arrangements, the $tRNA^{Thr}$ and $tRNA^{Trp}$ of Antrokoreana differ from them in their orientations and/or positions. This suggests that the Spirobolida and Spirostreptida are more closely related to each other than to the Dipolopoda. Three scenarios are proposed to account for the unique gene arrangement of Antrokoreana. The data also imply that the Duplication and Nonrandom Loss (DNL) model is applicable to the order Julida. Bayesian inference (BI) and maximum likelihood (ML) analyses using amino acid sequences deduced from the 12 mitochondrial protein-encoding genes (excluding ATP8) support the view that the three juliformian members are monophyletic (BI 100%; ML 100%), that Thyropygus (Spirostreptida) and Narceus (Spirobolida) are clustered together (BI 100%; ML 83%), and that Antrokoreana (Julida) is a sister of the two. However, due to conflict with previous reports using cladistic approaches based on morphological characteristics, further studies are needed to confirm the close relationship between Spirostreptida and Spirobolida.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Korea Science & Engineering Foundation

References

  1. Abascal, F., Zardoya, R., and Posada, D. (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104−2105
  2. Adachi, J. and Hasegawa, M. (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42, 459−468
  3. Boore, J. L. (1999) Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767−1780
  4. Boore, J. L. and Brown, W. M. (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr. Opin. Genet. Dev. 8, 668−674
  5. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540−552
  6. Covacin, C., Shao, R., Cameron, S., and Barker, S. C. (2006) Extraordinary number of gene rearrangements in the mitochondrial genomes of lice (Phthiraptera: Insecta). Insect Mol. Biol. 15, 63−68
  7. Crease, T. J. (1999) The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea). Gene 233, 89−99
  8. Enghoff, H. (1981) A cladistic analysis and classification of the millipede order Julida. Z. Zool. Syst. Evolut. Forsch. 19, 285− 319
  9. Enghoff, H. (1984) Phylogeny of millipedes - a cladistic analysis. Z. Zool. Syst. Evolut. Forsch. 22, 8−26
  10. Enghoff, H. (1985) The millipede family Namasomatidae. With the description of a new genus, and a revision of Orinisobates (Diplopoda: Julida). Entomol. Scandinavica 16, 27−67
  11. Enghoff, H. (1991) A revised cladistic analysis and classification of the millipede order Julida. With establishment of four new families and description of a new nemasomatoid genus from Japan. Z. Zool. Syst. Evolut. Forsch. 29, 241−263
  12. Enghoff, H. (1993) Phylogenetic biogeography of a Holarctic group: the julidan millipedes: cladistic subordinateness as an indicator of dispersal. J. Biogeography 20, 525−536
  13. Enghoff, H., Dohle W., and Blower J. G. (1993) Anamorphosis in millipedes (Diplopoda) - the present state of knowledge with some developmental and phylogenetic considerations. Zool. J. Linnean Soc. 109, 103−234
  14. Folmer, O., Black, M., Hoeh, R., Lutz, R. A., and Vrijekhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294−299
  15. Garey, J. R. and Wolstenholme, D. R. (1989) Plathyhelminth mitochondrial DNA: evidence for early evolutionary origin of a $tRNA^{ser}$ AGN that contains a dihydrouridine arm replacement loop and of serine-specifying AGA and AGG codons. J. Mol. Evol. 28, 374−387
  16. Giribet, G., Edgecombe, D., and Wheeler, W. C. (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413,157−161 https://doi.org/10.1038/35093102
  17. Guindon, S. and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696−704
  18. Hassanin, A. (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: Strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol. Phylogenet. Evol. 38, 100−116
  19. Hickerson, M. J. and Cunningham, C. W. (2000) Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura). Mol. Biol. Evol. 17, 639–644
  20. Hoffman, R. L. (1979) Classification of the Diplopoda. Museum d'Histoire Naturelle, Geneve, pp. 237
  21. Hoffmann, R. J., Boore, J. L., and Brown, W. M. (1992) A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131, 397−412
  22. Hopkin, S. P. and Read, H. J. (1992) The biology of millipedes. Oxford University Press, Oxfordshire, pp. 11
  23. Huelsenbeck, J. P. and Ronquist, F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754−755
  24. Hwang, U. W. and Kim, W. (1999) General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. Korean J. Parasitol. 37, 215−228
  25. Hwang, U. W., Friedrich, M., Tautz, D., Park, C. J., and Kim, W. (2001) Mitochondrial protein phylogeny join myriapods with chelicerates. Nature 413, 154−157 https://doi.org/10.1038/35093097
  26. Jeanne, M. S. and Lydeard, C. (2003) Complete mtDNA sequence of the North American freshwater mussel, Lampsilis ornata (Unionidae): An examination of the evolution and phylognetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Mol. Biol. Evol. 20, 1854−1866
  27. Kambhampati, S. and Smith, P. T. (1995) PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 4, 233−236
  28. Kumazawa, Y. and Nishida, M. (1993) Sequence evolution of mitochondrial transfer RNA genes and deep branch animal phylogenetics. J. Mol. Evol. 37, 380−398
  29. Lavrov, D. V., Boore, J. L., and Brown, W. M. (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol. Biol. Evol. 19, 163−169
  30. Lim, J. T. and Hwang, U. W. (2006) Complete mitochondrial genome of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia): non-monophylies of Maxillopoda and Crustacea. Mol. Cells 22, 314−322
  31. Lowe, T. M. and Eddy, S. R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955−964
  32. Machida, R. J., Miya, M. U., Nishida, M., and Nishida, S. (2002) Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Mar. Biotechnol. 4, 406–417
  33. Mau, B., Newton, M. A., and Larget, B. (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55, 1−12
  34. Miller, A. D., Nguyen, T. T. T., Burridge, C. P., and Austin, C. M. (2004) Complete mitochondrial DNA sequence of the Australian freshwater crayfish, Cherax destructor (Crustacea: Decapoda: Parastacidae): a novel gene order revealed. Gene 331, 65−72
  35. Miller, A. D., Murphy, N. P., Burridge, C. P., and Austin, C. M. (2005) Complete mitochondrial DNA sequences of the Decapod Crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae). Mar. Biotechnol. 7, 339−349
  36. Murakami, Y. (1969) Myriapods found in limestone caves of Northern Honshu, Japan. Bull. Natn. Sci. Mus. Tokyo 1, 557− 582
  37. Murakami, Y. and Paik, K. Y. (1968) Results of the speleological survey in South Korea 1966.XI. Cave-dwelling myriapods from the southern part of Korea. Bull. Natn. Sci. Mus. Tokyo 11, 363−384
  38. Nardi, F., Spinsanti, G., Boore, J. L., Carapelli, A., Dallai, R., et al. (2003) Hexapod origins: monophyletic or paraphyletic? Science 299, 1887−1889 https://doi.org/10.1126/science.1079641
  39. Navajas, M., Le Conte, Y., Solignac, M., Cros-Arteil, S., and Cornuet, J. M. (2002) The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata). Mol. Biol. Evol. 19, 2313− 2317
  40. Negrisolo, E., Minelli, A., and Valle, G. (2004) The mitochondrial genome of the house centipede Scutigera and the monophyly versus paraphyly of myriapods. Mol. Biol. Evol. 21, 770−780
  41. Ogoh, K. and Ohmiya, Y. (2004) Complete mitochondrial DNA sequence of the sea-firefly, Vargula hilgendorfii (Crustacea, Ostracoda) with duplicate control regions. Gene 327, 131−139
  42. Ojala, D., Montoya, J., and Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470−474
  43. Park, J.-K., Choe, B. L., and Eom, K. S. (2004) Two mitochondrial lineages in Korean freshwater corbicula (Corbiculidae: Bivalvia). Mol. Cells 17, 410−414
  44. Regier, J. C. and Shultz, J. W. (2001) A phylogenetic analysis of the Myriapoda (Arthropoda) using two nuclear proteinencoding genes. Zool. J. Linnean Soc. 132, 469−486
  45. Regier, J. C., Wilson, H. M., and Shultz, J. W. (2005) Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. Mol. Phylogenet. Evol. 34, 147−158
  46. Sierwald, P., Shear, W. A., Shelley, R. M., and Bond, J. E. (2003) Millipede phylogeny revisited in the light of the enigmatic order Siphoniulida. J. Zool. Syst. Evol. 41, 87−99
  47. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., et al. (1994) Evolution, weighting and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651−701
  48. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876−4882 https://doi.org/10.1093/nar/24.24.4882
  49. Tomita, K., Yokobori, S., Oshima, T., Ueda, T., and Watanabe, K. (2002) The cephalopod Loligo bleekeri mitochondrial genome: multiplied noncoding regions and transposition of tRNA genes. J. Mol. Evol. 54, 486−500
  50. Wolstenholme, D. R. (1992) Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141, 173−216
  51. Yamazaki, N., Ueshima, R., Terrett, J. A., Yokobori, S., Kaifu, M., et al. (1997) Evolution of pulmonate gastropod mitochondrial genomes: comparisons of gene organizations of Euhadra, Cepaea and Albinaria and implications of unusual tRNA secondary structures. Genetics 145, 749−758