• 제목/요약/키워드: Gene delivery system

검색결과 105건 처리시간 0.035초

Delivery of growth factor-associated genes to mesenchymal stem cells for cartilage and bone tissue regeneration

  • Ahn, Jongchan;Park, Seah;Cha, Byung-Hyun;Kim, Jae Hwan;Park, Hansoo;Joung, Yoon Ki;Han, Inbo;Lee, Soo-Hong
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권3호
    • /
    • pp.151-162
    • /
    • 2014
  • Genetically-modified mesenchymal stem cells (GM-MSCs) have emerged as promising therapeutic tools for orthopedic degenerative diseases. GM-MSCs have been widely reported that they are able to increase bone and cartilage tissue regeneration not only by secreting transgene products such as growth factors in a long-term manner, also by inducing MSCs into tissue-specific cells. For example, MSCs modified with BMP-2 gene increased secretion of BMP-2 protein resulting in enhancement of bone regeneration, while MSCs with TGF-b gene did cartilage regeneration. In this review, we introduce several growth factors for gene delivery to MSCs and strategies for bone and cartilage tissue regeneration using GM-MSCs. Furthermore, we describe strategies for strengthening GM-MSCs to more intensively induce tissue regeneration by co-delivery system of multiple genes.

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

Establishment of An Efficient and Stable Transgene Expression System in Chicken Primordial Germ Cells

  • Yang, Ju-Hyun;Kim, Sung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1536-1540
    • /
    • 2012
  • Chicken primordial germ cells (cPGCs) are founder germ cells in embryonic stage of development that eventually give rise to sperms or oocytes. Currently cPGCs are only known cells enabling germline transmission in chicken and their cultivation protocols were recently established. Although genome modifications of chickens are now theoretically possible using cPGCs, there are still several hurdles to overcome to practically use cPGCs as mediators for chicken transgenesis. First, efficiency of gene delivery into cPGCs remains low with current methods. Second, there aregene silencing mechanisms against the expression of foreign genes in cPGCs. In this study, we successfully increased the efficiency of gene delivery in cPGCs by taking advantage of the TTAA-specific $piggybac$ transposon system. Moreover, a pipette-type electroporator significantly enhanced transfection efficiency up to 5-fold compared withcuvette-type methods. Taken together, the technological advances in our study will provide practical benefits for the application to fulfill genetic modifications of chicken genome.

별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발 (Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review)

  • 신효정;이가영;권기상;권오유;김동운
    • 생명과학회지
    • /
    • 제31권9호
    • /
    • pp.849-855
    • /
    • 2021
  • 최근에는 나노기술이 다양한 분야에 도입되고 활용되면서 신약개발이 가속화되고 있다. 나노입자는 약물의 단일 투여로 장기간 동안 혈중 약물 농도를 유지하고, 병리학적 부위에만 선택적으로 방출되는 장점이 있어 비병리 주위에 대한 부작용을 줄일 수 있다. Poly (D,L-lactic-co-glycolic acid) (PLGA)는 가장 광범위하게 개발된 생분해성 고분자 중 하나이다. PLGA는 다양한 응용분야의 약물전달에 널리 사용된다. 또한 FAD에 의해 약물전달 시스템으로 승인되었으며, 유전자 치료제와 같은 제어방출제형에 널리 적용된다. PLGA 나노입자는 수동 및 능동 표적화 방법을 사용하여 특정 세포 유형에 고효율의 전달 시스템으로 개발되었다. 이러한 PLGA 나노입자를 이용한 약물전달체 개발 후 표적 부위에 선택적으로 약물을 전달하고 질병에 따라 장기간 유효 혈중 농도를 최적화한다. 이 리뷰논문에서 우리는 유전자 치료를 위한 PLGA 나노 물질을 기반으로 하는 성상 세포 선택적 나노입자의 개발을 조사하여 세포 특이적으로 치료결과를 향상시키는 방법에 중점을 두고자 한다.

유산균을 이용한 겸구용 항원 단백질 수송능 연구 (Lactic Acid Bacteria as Oral Antigen Protein Carriers)

  • 조희정;최한곤;김정애;오유경
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권2호
    • /
    • pp.75-80
    • /
    • 2005
  • A promising application of Lactococcus lactis is its use as live vehicles for production and delivery of heterologous proteins of vaccines and therapeutic substances. Because L. lactis has GRAS ('generally regarded as safe') status, we tested whether L. lactis could function as the carrier of the Ll protein of human papillomavirus (HPV) type 16. The RNA level expression of Ll gene was detected in L. Lactis. The Ll protein was expressed in L. lactis with Ll gene. The growth of strains L. lactis with an empty plasmid (pAMJ328) and L. lactis with Ll-encoding plasmid (pAMJ328-Ll) was slightly decreased in comparison with the growth of strains L. lactis (wild type). However, all the three strains of L. lactis maintained the ability to ferment sugars primarily into lactic acid, indicating that Ll protein did not affect the biochemical property of L. lactis. These results suggest that L. lactis, capable of carrying Ll protein, might be further developed as a biocompatible oral protein delivery system.

유전자 교정 기술의 생의학적 응용 (Biomedical Application of Gene Editing)

  • 박주찬;장현기
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.29-36
    • /
    • 2022
  • The CRISPR system has revolutionized gene editing field. Cas9-mediated gene editing such as Indel induction or HDR enable targeted gene disruption or precise correction of mutation. Moreover, CRISPR-based new editing tools have been developed such as base editors. In this review, we focus on gene editing in human pluripotent stem cells, which is principal technique for gene correction therapy and disease modeling. Pluripotent stem cell-specific drug YM155 enabled selection of target gene-edited pluripotent stem cells. Also, we discussed base editing for treatment of congenital retina disease. Adenine base editor delivery as RNP form provide an approach for genetic disease treatment with safe and precise in vivo gene correction.

저분자량 키토산/유전자 나노콤플렉스 제조 및 이를 이용한 293 세포로의 전달 (DNA Condensation and Delivery in 293 Cells Using Low Molecular Weight Chitosan/gene Nano-complex)

  • 방시원;장양수;김중현;김우식
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.313-317
    • /
    • 2005
  • 양이온성 고분자와 같은 합성 유전자 전달체들은 음이온성을 지닌 plasmid DNA와 쉽게 콤플렉스를 형성하는 경향이 있다. 이에 키토산은 유전자 전달체 시스템으로써 이용되어 질 수 있는 무한한 가능성을 지닌 polysaccharide이다. 저분자량 키토산이 DNA와 결합을 할 수 있는지 확인하기 위하여 전기영동장치를 이용하여 분석하였다. DLS(dynamic laser scattering)와 SEM(scanning electron microscopy)을 이용하여 키토산/DNA 콤플렉스의 크기와 모폴로지를 조사하였다. 또한, 키토산의 분자량과 전하밀도가 콤플렉스의 크기와 결합된 DNA의 양에 어떻게 영향을 주는지 연구를 수행하였다. 저분자량 키토산은 실험과정에서 사용되는 양을 늘려갈수록 84-108%의 세포 생존율을 보임에 따라 그 독성이 무시할 정도가 됨을 확인할 수 있었다. 키토산/DNA 콤플렉스를 이용한 유전자 발현 효율 실험에서는 lipofecamine에 비해서는 낮은 값을 보였지만, naked DNA를 이용한 경우보다는 상대적으로 높은 값을 나타내었다. 키토산의 분자량에 따른 유전자 발현 효율 연구에서는 평균 분자량이 8,517인 키토산을 사용한 경우가 4,078의 분자량을 이용한 실험 결과보다 높은 값을 보였고, 이는 키토산의 전하밀도가 유전자 발현 효율에 영향을 준다는 것을 확인할 수 있었다.

Sodium Iodide Symporter (NIS)를 이용한 분자영상 (Molecular Imaging Using Sodium Iodide Symporter (NIS))

  • 조제열
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.152-160
    • /
    • 2004
  • Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer or prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic agent when combined with radioiodide injection. Better NIS-mediated imaging and tumor treatment by radioiodide requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

Hyaluronic Acid in Drug Delivery Systems

  • Jin, Yu-Jin;Ubonvan, Termsarasab;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.33-43
    • /
    • 2010
  • Hyaluronic acid (HA) is a biodegradable, biocompatible, non-toxic, non-immunogenic and non-inflammatory linear polysaccharide, which has been used for various medical applications including arthritis treatment, wound healing, ocular surgery, and tissue augmentation. Because of its mucoadhesive property and safety, HA has received much attention as a tool for drug delivery system development. It has been used as a drug delivery carrier in both nonparenteral and parenteral routes. The nonparenteral application includes the ocular and nasal delivery systems. On the other hand, its use in parenteral systems has been considered important as in the case of sustained release formulation of protein drugs through subcutaneous injection. Particles and hydrogels by various methods using HA and HA derivatives as well as by conjugation with other polymer have been the focus of many studies. Furthermore, the affinity of HA to the CD44 receptor which is overexpressed in various tumor cells makes HA an important means of cancer targeted drug delivery. Current trends and development of HA as a tool for drug delivery will be outlined in this review.