DOI QR코드

DOI QR Code

Delivery of growth factor-associated genes to mesenchymal stem cells for cartilage and bone tissue regeneration

  • Ahn, Jongchan (Department of Biomedical Science, CHA University) ;
  • Park, Seah (Department of Biomedical Science, CHA University) ;
  • Cha, Byung-Hyun (Department of Biomedical Science, CHA University) ;
  • Kim, Jae Hwan (Department of Biomedical Science, CHA University) ;
  • Park, Hansoo (Department of Integrative Engineering, Chung-Ang University) ;
  • Joung, Yoon Ki (Department of Biomedical Science, CHA University) ;
  • Han, Inbo (Department of Neurosurgery, Bundang Medical Center, CHA University) ;
  • Lee, Soo-Hong (Department of Biomedical Science, CHA University)
  • Received : 2014.09.29
  • Accepted : 2014.09.30
  • Published : 2014.09.25

Abstract

Genetically-modified mesenchymal stem cells (GM-MSCs) have emerged as promising therapeutic tools for orthopedic degenerative diseases. GM-MSCs have been widely reported that they are able to increase bone and cartilage tissue regeneration not only by secreting transgene products such as growth factors in a long-term manner, also by inducing MSCs into tissue-specific cells. For example, MSCs modified with BMP-2 gene increased secretion of BMP-2 protein resulting in enhancement of bone regeneration, while MSCs with TGF-b gene did cartilage regeneration. In this review, we introduce several growth factors for gene delivery to MSCs and strategies for bone and cartilage tissue regeneration using GM-MSCs. Furthermore, we describe strategies for strengthening GM-MSCs to more intensively induce tissue regeneration by co-delivery system of multiple genes.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Aslan, H., Zilberman, Y., Arbeli, V., Sheyn, D., Matan, Y., Liebergall, M., Li, J.Z., Helm, G.A., Gazit, D. and Gazit, Z. (2006), "Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration", Tissue. Eng., 12(4), 877-889. https://doi.org/10.1089/ten.2006.12.877
  2. Bauer, T.W. and Muschler, G.F. (2000), "Bone graft materials. An overview of the basic science", Clin. Orthop. Relat. Res., 371, 10-27. https://doi.org/10.1097/00003086-200002000-00003
  3. Calori, G.M., Donati, D., Di Bella, C. and Tagliabue, L., (2009), "Bone morphogenetic proteins and tissue engineering: future directions", Injury, 40(Suppl 3), S67-76. https://doi.org/10.1016/S0020-1383(09)70015-4
  4. Cha, B.H., Kim, J.H., Kang, S.W., Do, H.J., Jang, J.W., Choi, Y.R., Park, H., Kim, B.S. and Lee, S.H. (2013), "Cartilage tissue formation from dedifferentiated chondrocytes by codelivery of BMP-2 and SOX- 9 genes encoding bicistronic vector", Cell Transplant., 22(9), 1519-1528. https://doi.org/10.3727/096368912X647261
  5. Chang, S.C., Chuang, H.L., Chen, Y.R., Chen, J.K., Chung, H.Y., Lu, Y.L., Lin, H.Y., Tai, C.L. and Lou, J. (2003), "Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration", Gene Ther., 10(24), 2013-2019. https://doi.org/10.1038/sj.gt.3302106
  6. Chen, F.M., Zhang, M. and Wu, Z.F. (2010), "Toward delivery of multiple growth factors in tissue engineering", Biomater., 31(24), 6279-6308. https://doi.org/10.1016/j.biomaterials.2010.04.053
  7. Cheng, H., Jiang, W., Phillips, F.M., Haydon, R.C., Peng, Y., Zhou, L., Luu, H.H., An, N., Breyer, B., Vanichakarn, P., Szatkowski, J.P., Park, J.Y. and He, T.C. (2003), "Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs)", J. Bone Joint Surg. Am, 85(8), 1544-1552. https://doi.org/10.2106/00004623-200308000-00017
  8. Clair, B.L., Johnson, A.R. and Howard, T. (2009), "Cartilage repair: current and emerging options in treatment", Foot Ankle Spec., 2(4), 179-188. https://doi.org/10.1177/1938640009342272
  9. Dai, K.R., Xu, X.L., Tang, T.T., Zhu, Z.A., Yu, C.F., Lou, J.R. and Zhang, X.L. (2005), "Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone", Calcif. Tissue Int., 77(1), 55-61. https://doi.org/10.1007/s00223-004-0095-z
  10. Dimitriou, R., Jones, E., McGonagle, D. and Giannoudis, P.V. (2011), "Bone regeneration: current concepts and future directions", BMC Med., 9(1), 66. https://doi.org/10.1186/1741-7015-9-66
  11. Enomoto-Iwamoto, M., Iwamoto, M., Mukudai, Y., Kawakami, Y., Nohno, T., Higuchi, Y., Takemoto, S., Ohuchi, H., Noji, S. and Kurisu, K. (1998), "Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes", J. Cell Biol., 140(2), 409-418. https://doi.org/10.1083/jcb.140.2.409
  12. Evans, C.H. (2012), "Gene delivery to bone", Adv. Drug Deliv. Rev., 64(12), 1331-1340. https://doi.org/10.1016/j.addr.2012.03.013
  13. Fortier, L.A., Barker, J.U., Strauss, E.J., McCarrel, T.M. and Cole, B.J. (2011), "The role of growth factors in cartilage repair", Clin. Orthop. Relat. Res., 469(10), 2706-2715. https://doi.org/10.1007/s11999-011-1857-3
  14. Guo, C.A., Liu, X.G., Huo, J.Z., Jiang, C., Wen, X.J. and Chen, Z.R. (2007), "Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-beta1-transfected mesenchymal stem cells grown on chitosan scaffolds", J. Biosci. Bioeng., 103(6), 547-556. https://doi.org/10.1263/jbb.103.547
  15. Guo, X., Zheng, Q., Yang, S., Shao, Z., Yuan, Q., Pan, Z., Tang, S., Liu, K. and Quan, D. (2006), "Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene", Biomed. Mater., 1(4), 206-215. https://doi.org/10.1088/1748-6041/1/4/006
  16. Hotten, G.C., Matsumoto, T., Kimura, M., Bechtold, R.F., Kron, R., Ohara, T., Tanaka, H., Satoh, Y., Okazaki, M., Shirai, T., Pan, H., Kawai, S., Pohl, J.S. and Kudo, A. (1996), "Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs", Growth Factors, 13(1-2), 65-74. https://doi.org/10.3109/08977199609034567
  17. Hsu, W.K., Sugiyama, O., Park, S.H., Conduah, A., Feeley, B. T., Liu, N.Q., Krenek, L., Virk, M.S., An, D. S., Chen, I.S. and Lieberman, J.R. (2007), "Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats", Bone, 40(4), 931-938. https://doi.org/10.1016/j.bone.2006.10.030
  18. Hsu, W.K., Wang, J.C., Liu, N.Q., Krenek, L., Zuk, P.A., Hedrick, M.H., Benhaim, P. and Lieberman, J.R. (2008), "Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model", J. Bone Joint Surg. Am., 90(5), 1043-1052. https://doi.org/10.2106/JBJS.G.00292
  19. Ito, H., Goater, J.J., Tiyapatanaputi, P., Rubery, P.T., O'Keefe, R.J. and Schwarz, E.M. (2004), "Lightactivated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells", Gene Ther., 11(1), 34-41. https://doi.org/10.1038/sj.gt.3302102
  20. Kang, S.W., Do, H.J., Han, I.B., Shin, D.A., Kim, H.O., Kim, J.H. and Lee, S.H. (2012), "Increase of chondrogenic potentials in adipose-derived stromal cells by co-delivery of type I and type II TGFbeta receptors encoding bicistronic vector system", J. Control. Release, 160(3), 577-582. https://doi.org/10.1016/j.jconrel.2012.04.011
  21. Katayama, R., Wakitani, S., Tsumaki, N., Morita, Y., Matsushita, I., Gejo, R. and Kimura, T. (2004), "Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow", Rheumatology (Oxford), 43(8), 980-985. https://doi.org/10.1093/rheumatology/keh240
  22. Kawamura, K., Chu, C.R., Sobajima, S., Robbins, P.D., Fu, F.H., Izzo, N.J. and Niyibizi, C. (2005), "Adenoviral-mediated transfer of TGF-beta1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures", Exp. Hematol., 33(8), 865-872. https://doi.org/10.1016/j.exphem.2005.05.010
  23. Kimelman, N., Pelled, G., Helm, G.A., Huard, J., Schwarz, E.M. and Gazit, D. (2007), "Review: gene- and stem cell-based therapeutics for bone regeneration and repair", Tissue Eng., 13(6), 1135-1150. https://doi.org/10.1089/ten.2007.0096
  24. Kneser, U., Schaefer, D.J., Polykandriotis, E. and Horch, R.E. (2006), "Tissue engineering of bone: the reconstructive surgeon's point of view", J. Cell Mol. Med., 10(1), 7-19. https://doi.org/10.1111/j.1582-4934.2006.tb00287.x
  25. Kofron, M.D. and Laurencin, C.T. (2006), "Bone tissue engineering by gene delivery", Adv. Drug Deliv. Rev., 58(4), 555-576. https://doi.org/10.1016/j.addr.2006.03.008
  26. Kruyt, M.C., de Bruijn, J.D., Wilson, C.E., Oner, F.C., van Blitterswijk, C.A., Verbout, A.J. and Dhert, W.J. (2003), "Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats", Tissue Eng., 9(2), 327-336. https://doi.org/10.1089/107632703764664792
  27. Kruyt, M.C., Wilson, C.E., de Bruijn, J.D., van Blitterswijk, C.A., Oner, C.F., Verbout, A.J. and Dhert, W.J. (2006), "The effect of cell-based bone tissue engineering in a goat transverse process model", Biomaterials, 27(29), 5099-5106. https://doi.org/10.1016/j.biomaterials.2006.05.048
  28. Kumar, S., Wan, C., Ramaswamy, G., Clemens, T.L. and Ponnazhagan, S. (2010), "Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect", Mol. Ther., 18(5), 1026-1034. https://doi.org/10.1038/mt.2009.315
  29. Lee, K., Silva, E.A. and Mooney, D.J. (2010), "Growth factor delivery-based tissue engineering: general approaches and a review of recent developments", J. R. Soc. Interface, 8(55), 153-170.
  30. Lee, S.H. and Shin, H. (2007), "Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering", Adv. Drug Deliv. Rev., 59(4-5), 339-359. https://doi.org/10.1016/j.addr.2007.03.016
  31. Lee, S.J., Kang, S.W., Do, H.J., Han, I., Shin, D.A., Kim, J.H. and Lee, S.H. (2010), "Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells", Biomater., 31(21), 5652-5659. https://doi.org/10.1016/j.biomaterials.2010.03.019
  32. Meyerrose, T., Olson, S., Pontow, S., Kalomoiris, S., Jung, Y., Annett, G., Bauer, G. and Nolta, J.A. (2010), "Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors", Adv. Drug Deliv. Rev., 62(12), 1167-1174. https://doi.org/10.1016/j.addr.2010.09.013
  33. Miyazaki, M., Sugiyama, O., Zou, J., Yoon, S.H., Wei, F., Morishita, Y., Sintuu, C., Virk, M.S., Lieberman, J.R. and Wang, J.C. (2008), "Comparison of lentiviral and adenoviral gene therapy for spinal fusion in rats", Spine (Phila Pa 1976), 33(13), 1410-1417. https://doi.org/10.1097/BRS.0b013e3181761003
  34. O'Driscoll, S.W. (1998), "The healing and regeneration of articular cartilage", J. Bone Joint Surg. Am., 80(12), 1795-1812. https://doi.org/10.2106/00004623-199812000-00011
  35. Oryan, A., Alidadi, S., Moshiri, A. and Maffulli, N. (2014), "Bone regenerative medicine: classic options, novel strategies, and future directions", J. Orthop. Surg. Res., 9(1), 18. https://doi.org/10.1186/1749-799X-9-18
  36. Pagnotto, M.R., Wang, Z., Karpie, J.C., Ferretti, M., Xiao, X. and Chu, C.R. (2007), "Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair", Gene Ther., 14(10), 804-813. https://doi.org/10.1038/sj.gt.3302938
  37. Park, J., Gelse, K., Frank, S., von der Mark, K., Aigner, T. and Schneider, H. (2006), "Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells" , J. Gene Med., 8(1), 112-125. https://doi.org/10.1002/jgm.826
  38. Park, J., Ries, J., Gelse, K., Kloss, F., von der Mark, K., Wiltfang, J., Neukam, F.W. and Schneider, H. (2003), "Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes", Gene Ther., 10(13), 1089-1098. https://doi.org/10.1038/sj.gt.3301960
  39. Peterson, B., Zhang, J., Iglesias, R., Kabo, M., Hedrick, M., Benhaim, P. and Lieberman, J.R. (2005), "Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue", Tissue Eng., 11(1-2), 120-129. https://doi.org/10.1089/ten.2005.11.120
  40. Porada, C.D. and Almeida-Porada, G. (2010), "Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery", Adv. Drug Deliv. Rev., 62(12), 1156-1166. https://doi.org/10.1016/j.addr.2010.08.010
  41. Qi, B.W., Yu, A.X., Zhu, S.B., Zhou, M. and Wu, G. (2013), "Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-beta1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects", Exp. Biol. Med. (Maywood), 238(1), 23-30. https://doi.org/10.1258/ebm.2012.012223
  42. Qi, Y., Feng, G. and Yan, W. (2012), "Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis", Mol. Biol. Rep., 39(5), 5683-5689. https://doi.org/10.1007/s11033-011-1376-z
  43. Riew, K.D., Wright, N.M., Cheng, S., Avioli, L.V. and Lou, J. (1998), "Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model", Calcif. Tissue Int., 63(4), 357-360. https://doi.org/10.1007/s002239900540
  44. Santo, V.E., Gomes, M.E., Mano, J.F. and Reis, R.L. (2013), "Controlled release strategies for bone, cartilage, and osteochondral engineering-Part I: recapitulation of native tissue healing and variables for the design of delivery systems", Tissue Eng. Part B Rev., 19(4), 308-326. https://doi.org/10.1089/ten.teb.2012.0138
  45. Santo, V.E., Gomes, M.E., Mano, J.F. and Reis, R.L. (2013), "Controlled release strategies for bone, cartilage, and osteochondral engineering--Part II: challenges on the evolution from single to multiple bioactive factor delivery", Tissue Eng. Part B Rev., 19(4), 327-352.
  46. Sheyn, D., Kallai, I., Tawackoli, W., Cohn Yakubovich, D., Oh, A., Su, S., Da, X., Lavi, A., Kimelman-Bleich, N., Zilberman, Y., Li, N., Bae, H., Gazit, Z., Pelled, G. and Gazit, D. (2011), "Gene-modified adult stem cells regenerate vertebral bone defect in a rat model", Mol. Pharm., 8(5), 1592-1601. https://doi.org/10.1021/mp200226c
  47. Silber, J.S., Anderson, D.G., Daffner, S.D., Brislin, B.T., Leland, J.M., Hilibrand, A.S., Vaccaro, A.R. and Albert, T J. (2003), "Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion", Spine (Phila Pa 1976), 28(2), 134-139. https://doi.org/10.1097/00007632-200301150-00008
  48. Steinert, A.F., Palmer, G.D., Pilapil, C., Noth, U., Evans, C.H. and Ghivizzani, S.C. (2009), "Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer", Tissue Eng. Part A, 15(5), 1127-1139. https://doi.org/10.1089/ten.tea.2007.0252
  49. Sugiyama, O., An, D.S., Kung, S.P., Feeley, B.T., Gamradt, S., Liu, N.Q., Chen, I.S. and Lieberman, J.R. (2005), "Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo", Mol. Ther., 11(3), 390-398. https://doi.org/10.1016/j.ymthe.2004.10.019
  50. Tsumaki, N., Tanaka, K., Arikawa-Hirasawa, E., Nakase, T., Kimura, T., Thomas, J.T., Ochi, T., Luyten, F.P. and Yamada, Y. (1999), "Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation", J. Cell Biol., 144(1), 161-173. https://doi.org/10.1083/jcb.144.1.161
  51. Turgeman, G., Pittman, D.D., Muller, R., Kurkalli, B.G., Zhou, S., Pelled, G., Peyser, A., Zilberman, Y., Moutsatsos, I.K. and Gazit, D. (2001), "Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy", J. Gene Med., 3(3), 240-251. https://doi.org/10.1002/1521-2254(200105/06)3:3<240::AID-JGM181>3.0.CO;2-A
  52. Xia, W., Jin, Y.Q., Kretlow, J.D., Liu, W., Ding, W., Sun, H., Zhou, G., Zhang, W. and Cao, Y. (2009), "Adenoviral transduction of hTGF-beta1 enhances the chondrogenesis of bone marrow derived stromal cells", Biotechnol Lett., 31(5), 639-646. https://doi.org/10.1007/s10529-009-9930-7
  53. Xu, X.L., Lou, J., Tang, T., Ng, K.W., Zhang, J., Yu, C. and Dai, K. (2005), "Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering", J. Biomed. Mater. Res. B Appl. Biomater., 75(2), 289-303.
  54. Xu, X.L., Tang, T., Dai, K., Zhu, Z., Guo, X.E., Yu, C. and Lou, J. (2005), "Immune response and effect of adenovirus-mediated human BMP-2 gene transfer on the repair of segmental tibial bone defects in goats", Acta Orthop., 76(5), 637-646. https://doi.org/10.1080/17453670510041709
  55. Yang, M., Ma, Q.J., Dang, G.T., Ma, K., Chen, P. and Zhou, C.Y. (2005), "In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP- 7", Cytotherapy, 7(3), 273-281. https://doi.org/10.1080/14653240510027244
  56. Yuan, X.L., Meng, H.Y., Wang, Y.C., Peng, J., Guo, Q.Y., Wang, A.Y. and Lu, S.B. (2014), "Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies", Osteoarthritis Cartilage, 22(8), 1077-1089. https://doi.org/10.1016/j.joca.2014.05.023
  57. Zachos, T., Diggs, A., Weisbrode, S., Bartlett, J. and Bertone, A. (2007), "Mesenchymal stem cell-mediated gene delivery of bone morphogenetic protein-2 in an articular fracture model", Mol. Ther., 15(8), 1543-1550. https://doi.org/10.1038/sj.mt.6300192
  58. Zhang, L., Hu, J. and Athanasiou, K.A. (2009), "The role of tissue engineering in articular cartilage repair and regeneration", Crit. Rev. Biomed. Eng., 37(1-2), 1-57. https://doi.org/10.1615/CritRevBiomedEng.v37.i1-2.10
  59. Zhang, X.S., Linkhart, T.A., Chen, S.T., Peng, H., Wergedal, J.E., Guttierez, G.G., Sheng, M.H., Lau, K.H. and Baylink, D.J. (2004), "Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice", J. Gene Med., 6(1), 4-15. https://doi.org/10.1002/jgm.477