DOI QR코드

DOI QR Code

Hyaluronic Acid in Drug Delivery Systems

  • Jin, Yu-Jin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Ubonvan, Termsarasab (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Dae-Duk (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2010.08.09
  • Accepted : 2010.10.05
  • Published : 2010.12.20

Abstract

Hyaluronic acid (HA) is a biodegradable, biocompatible, non-toxic, non-immunogenic and non-inflammatory linear polysaccharide, which has been used for various medical applications including arthritis treatment, wound healing, ocular surgery, and tissue augmentation. Because of its mucoadhesive property and safety, HA has received much attention as a tool for drug delivery system development. It has been used as a drug delivery carrier in both nonparenteral and parenteral routes. The nonparenteral application includes the ocular and nasal delivery systems. On the other hand, its use in parenteral systems has been considered important as in the case of sustained release formulation of protein drugs through subcutaneous injection. Particles and hydrogels by various methods using HA and HA derivatives as well as by conjugation with other polymer have been the focus of many studies. Furthermore, the affinity of HA to the CD44 receptor which is overexpressed in various tumor cells makes HA an important means of cancer targeted drug delivery. Current trends and development of HA as a tool for drug delivery will be outlined in this review.

Keywords

References

  1. Akima, K., Ito, H., Iwata, Y., Matsuo, K., Watari, N., Yanagi, M., Hagi, H., Oshima, K., Yagita, A., Atomi, Y., 1996. Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity. Journal of Drug Targeting 4, 1-8. https://doi.org/10.3109/10611869609046255
  2. Auzenne, E., Ghosh, S., Khodadadian, M., Rivera, B., Farquhar, D., Price, R., Ravoori, M., Kundra, V., Freedman, R., Klostergaard, J., 2007. Hyaluronic acid-paclitaxel: antitumor efficacy against CD44 (+) human ovarian carcinoma xenografts. Neoplasia (New York, NY) 9, 479. https://doi.org/10.1593/neo.07229
  3. Balazs, E., Denlinger, J., 1993. Viscosupplementation: a new concept in the treatment of osteoarthritis. Journal of rheumatology Supplement 20, 3-9.
  4. Balazs, E., Leshchiner, A., 1987. Cross-linked gels of hyaluronic acid and products containing such gels. In: Google Patents.
  5. Barbault-Foucher, S., Gref, R., Russo, P., Guechot, J., Bochot, A., 2002. Design of poly--caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. Journal of Controlled Release 83, 365-375. https://doi.org/10.1016/S0168-3659(02)00207-9
  6. Bernatchez, S.F., 1993. Ophthalmology.
  7. Bothner, H., Wik, O., 1987. Rheology of hyaluronate. Acta Oto-Laryngologica 104, 25-30.
  8. Bourguignon, L., Zhu, H., Shao, L., Chen, Y., 2000. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. Journal of Biological Chemistry 275, 1829. https://doi.org/10.1074/jbc.275.3.1829
  9. Brown, M., Jones, S., 2005. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. Journal of the European Academy of Dermatology and Venereology 19, 308-318. https://doi.org/10.1111/j.1468-3083.2004.01180.x
  10. Bucolo, C., Mangiafico, P., 1999. Pharmacological profile of a new topical pilocarpine formulation. Journal of Ocular Pharmacology and Therapeutics 15, 567-573. https://doi.org/10.1089/jop.1999.15.567
  11. Camber, O., Edman, P., Gurny, R., 1987. Influence of sodium hyaluronate on the meiotic effect of pilocarpine in rabbits. Current eye research 6, 779-784. https://doi.org/10.3109/02713688709034844
  12. Cascone, M., Sim, B., 1995. Blends of synthetic and natural polymers as drug delivery systems for growth hormone. Biomaterials 16, 569-574. https://doi.org/10.1016/0142-9612(95)91131-H
  13. Catterall, J., Jones, L., Turner, G., 1999. Membrane protein glycosylation and CD44 content in the adhesion of human ovarian cancer cells to hyaluronan. Clinical and Experimental Metastasis 17, 583-591. https://doi.org/10.1023/A:1006756518500
  14. Cho, K., Chung, T., Kim, B., Kim, M., Lee, J., Wee, W., Cho, C., 2003. Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro. International Journal of Pharmaceutics 260, 83-91. https://doi.org/10.1016/S0378-5173(03)00259-X
  15. Choi, K.Y., Chung, H., Min, K.H., Yoon, H.Y, Kim, K., Park, J.H., Kwon, I.C., Jeong, S.Y., 2010. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31, 106-114. https://doi.org/10.1016/j.biomaterials.2009.09.030
  16. Chono, S., Li, S., Conwell, C., Huang, L., 2008. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. Journal of Controlled Release 131, 64-69. https://doi.org/10.1016/j.jconrel.2008.07.006
  17. Chun, K.W., Lee, J.B., Kim, S.H., Park, T.G., 2005. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 26, 3319-3326. https://doi.org/10.1016/j.biomaterials.2004.07.055
  18. Coradini, D., Pellizzaro, C., Miglierini, G., Daidone, M., Perbellini, A., 1999. Hyaluronic acid as drug delivery for sodium butyrate: improvement of the anti-proliferative activity on a breast-cancer cell line. International Journal of Cancer 81, 411-416. https://doi.org/10.1002/(SICI)1097-0215(19990505)81:3<411::AID-IJC15>3.0.CO;2-F
  19. Culty, M., Shizari, M., Thompson, E., Underhill, C., 1994. Binding and degradation of hyaluronan by human breast cancer cell lines expressing different forms of CD44: correlation with invasive potential. Journal of cellular physiology 160, 275-286. https://doi.org/10.1002/jcp.1041600209
  20. de la Fuente M., Seijo, B., Alonso, M., 2008a. Novel hyaluronan-based nanocarriers for transmucosal delivery of macromolecules. Macromolecular bioscience 8, 441-450. https://doi.org/10.1002/mabi.200700190
  21. de la Fuente M., Seijo, B., Alonso, M.J., 2008b. Novel Hyaluronic Acid-Chitosan Nanoparticles for Ocular Gene Therapy. Investigative Ophthalmology & Visual Science 49, 2016-2024. https://doi.org/10.1167/iovs.07-1077
  22. Dollo, G., Malinovsky, J., Peron, A., Chevanne, F., Pinaud, M., Verge, R., Corre, P., 2004. Prolongation of epidural bupivacaine effects with hyaluronic acid in rabbits. International Journal of Pharmaceutics 272, 109-119. https://doi.org/10.1016/j.ijpharm.2003.12.002
  23. Edelstein, M., Abedi, M., Wixon, J., Edelstein, R., 2004. Gene therapy clinical trials worldwide 1989-2004-an overview. The journal of gene medicine 6, 597-602. https://doi.org/10.1002/jgm.619
  24. Elbert, D., Pratt, A., Lutolf, M., Halstenberg, S., Hubbell, J., 2001. Protein delivery from materials formed by self-selective conjugate addition reactions. Journal of Controlled Release 76, 11-25. https://doi.org/10.1016/S0168-3659(01)00398-4
  25. Eliaz, R., Szoka, Jr, F., 2001. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer research 61, 2592.
  26. Esposito, E., Menegatti, E., Cortesi, R., 2005. Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics 288, 35-49. https://doi.org/10.1016/j.ijpharm.2004.09.001
  27. Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J., Kissel, T., 2003. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121-1131. https://doi.org/10.1016/S0142-9612(02)00445-3
  28. Goldman, C., Soroceanu, L., Smith, N., Gillespie, G., Shaw, W., Burgess, S., Bilbao, G., Curiel, D., 1997. In vitro and in vivo gene delivery mediated by a synthetic polycationic amino polymer. Nature biotechnology 15, 462-466. https://doi.org/10.1038/nbt0597-462
  29. Gurny, R., Ryser, J., Tabatabay, C., Martenet, M., Edman, P., Camber, O., 1990. Precorneal residence time in humans of sodium hyaluronate as measured by gamma scintigraphy. Graefe's archive for clinical and experimental ophthalmology 228, 510-512. https://doi.org/10.1007/BF00918481
  30. Hahn, S., Jelacic, S., Maier, R., Stayton, P., Hoffman, A., 2004. Anti-inflammatory drug delivery from hyaluronic acid hydrogels. Journal of Biomaterials Science, Polymer Edition 15, 1111-1119. https://doi.org/10.1163/1568562041753115
  31. Hahn, S., Oh, E., Miyamoto, H., Shimobouji, T., 2006. Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. International Journal of Pharmaceutics 322, 44-51. https://doi.org/10.1016/j.ijpharm.2006.05.024
  32. Han, S.-E., Kang, H., Shim, G.Y., Kim S.J., Choi, H.-G., Kim, J., Hahn, S.K., Oh, Y.-K., 2009. Cationic derivatives of biocompatible hyaluronic acids for delivery of siRNA and antisense oligonucleotides. Journal of Drug Targeting 17, 123-132. https://doi.org/10.1080/10611860802472461
  33. Herbert, P., Murphy, K., Johnson, O., Dong, N., Jaworowicz, W., Tracy, M., Cleland, J., Putney, S., 1998. A large-scale process to produce microencapsulated proteins. Pharmaceutical research 15, 357-361. https://doi.org/10.1023/A:1011951626286
  34. Hirakura, T., Yasugi, K., Nemoto, T., Sato, M., Shimoboji, T., Aso, Y., Morimoto, N., Akiyoshi, K., 2009. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: New system for sustained delivery of protein with a chaperone-like function. Journal of Controlled Release.
  35. Hornof, M., de la Fuente, M., Hallikainen, M., Tammi, R.H., Urtti, A., 2008. Low molecular weight hyaluronan shielding of DNA/PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. The journal of gene medicine 10, 70-80. https://doi.org/10.1002/jgm.1125
  36. Horvat, S., Feher, A., Wolburg, H., Sipos, P., Veszelka, S., Toth, A., Kis, L., Kurunczi, A., Balogh, G., Kurti, L., 2009. Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. European journal of pharmaceutics and biopharmaceutics 72, 252-259. https://doi.org/10.1016/j.ejpb.2008.10.009
  37. Huh, Y., Cho, H., Yoon, I., Choi, M., Kim, J., Oh, E., Chung, S., Shim, C., Kim, D., 2010. Preparation and evaluation of spraydried hyaluronic acid microspheres for intranasal delivery of fexofenadine hydrochloride. European Journal of Pharmaceutical Sciences.
  38. Hume, L., Lee, H., Benedetti, L., Sanzgiri, Y., Topp, E., Stella, V., 1994. Ocular sustained delivery of prednisolone using hyaluronic acid benzyl ester films. International Journal of Pharmaceutics 111, 295-298. https://doi.org/10.1016/0378-5173(94)90352-2
  39. Illum, L., Farraj, N., Fisher, A., Gill, I., Miglietta, M., Benedetti, L., 1994. Hyaluronic acid ester microspheres as a nasal delivery system for insulin. Journal of Controlled Release 29, 133-141. https://doi.org/10.1016/0168-3659(94)90129-5
  40. Ito, T., Iidatanaka, N., Niidome, T., Kawano, T., Kubo, K., Yoshikawa, K., Sato, T., Yang, Z., Koyama, Y., 2006. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: Protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. Journal of Controlled Release 112, 382-388. https://doi.org/10.1016/j.jconrel.2006.03.013
  41. Ito, T., Yoshihara, C., Hamada, K., Koyama, Y., 2010. DNA/polyethyleneimine/ hyaluronic acid small complex particles and tumor suppression in mice. Biomaterials 31, 2912-2918. https://doi.org/10.1016/j.biomaterials.2009.12.032
  42. Jeong, B., Bae, Y., Kim, S., 2000. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. Journal of Controlled Release 63, 155-163. https://doi.org/10.1016/S0168-3659(99)00194-7
  43. Jeong, B., Lee, K., Gutowska, A., An, Y., 2002. % Thermogelling Biodegradable Copolymer Aqueous Solutions for Injectable Protein Delivery and Tissue Engineering. Biomacromolecules 3, 865-868. https://doi.org/10.1021/bm025536m
  44. Jiang, G., Park, K., Kim, J., Kim, K., Hahn, S., 2009. Target Specific Intracellular Delivery of siRNA/PEI- HA Complex by Receptor Mediated Endocytosis. Molecular Pharmaceutics 6, 727-737. https://doi.org/10.1021/mp800176t
  45. Jiang, H., Wang, Y., Huang, Q., Li, Y., Xu, C., Zhu, K., Chen, W., 2005. Biodegradable hyaluronic acid/N-carboxyethyl chitosan/protein ternary complexes as implantable carriers for controlled protein release. Macromolecular bioscience 5, 1226-1233. https://doi.org/10.1002/mabi.200500126
  46. Johnson, O., Cleland, J., Lee, H., Charnis, M., Duenas, E., Jaworowicz, W., Shepard, D., Shahzamani, A., Jones, A., Putney, S., 1996. A month-long effect from a single injection of microencapsulated human growth hormone. Nature Medicine 2, 795-799. https://doi.org/10.1038/nm0796-795
  47. Kim, A., 2005. Delivery of a vector encoding mouse hyaluronan synthase 2 via a crosslinked hyaluronan film. Biomaterials 26, 1585-1593. https://doi.org/10.1016/j.biomaterials.2004.05.015
  48. Kim, A., Checkla, D., Dehazya, P., Chen, W., 2003. Characterization of DNA-hyaluronan matrix for sustained gene transfer. Journal of Controlled Release 90, 81-95. https://doi.org/10.1016/S0168-3659(03)00175-5
  49. Kim, E.-J., Shim, G., Kim, K., Kwon, I.C., Oh, Y.-K., Shim, C.-K., 2009. Hyaluronic acid complexed to biodegradable poly Larginine for targeted delivery of siRNAs. The journal of gene medicine 11, 791-803. https://doi.org/10.1002/jgm.1352
  50. Kim, M., Park, T., 2002. Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone. Journal of Controlled Release 80, 69-77. https://doi.org/10.1016/S0168-3659(01)00557-0
  51. Kim, S., Hahn, S., Kim, M., Kim, D., Lee, Y., 2005. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. Journal of Controlled Release 104, 323-335. https://doi.org/10.1016/j.jconrel.2005.02.012
  52. Kobayashi, Y., Okamoto, A., Nishinari, K., 1994. Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology 31, 235-244. https://doi.org/10.3233/BIR-1994-31302
  53. Kumar, A., Sahoo, B., Montpetit, A., Behera, S., Lockey, R., Mohapatra, S., 2007. Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine: Nanotechnology, Biology and Medicine 3, 132-137. https://doi.org/10.1016/j.nano.2007.03.001
  54. Kuo, J., Swann, D., Prestwich, G., 1991. Chemical modification of hyaluronic acid by carbodiimides. Bioconjugate Chemistry 2, 232-241. https://doi.org/10.1021/bc00010a007
  55. Kyyronen, K., Hume, L., Benedetti, L., Urtti, A., Topp, E., Stella., V., 1992. Methylprednisolone esters of hyaluronic acid in ophthalmic drug delivery: in vitro and in vivo release studies. International Journal of Pharmaceutics 80, 161-169. https://doi.org/10.1016/0378-5173(92)90274-6
  56. Laurent, T., 1998. The chemistry, biology and medical applications of hyaluronan and its derivatives: Portland Pr.
  57. Le Bourlais, C., Acar, L., Zia, H., Sado, P., Needham, T., Leverge, R., 1998. Ophthalmic drug delivery systems--recent advances. Progress in retinal and eye research 17, 33-58. https://doi.org/10.1016/S1350-9462(97)00002-5
  58. Lee, B., West, B., McLemore, R., Pauken, C., Vernon, B., 2006. Insitu injectable physically and chemically gelling NIPAAmbased copolymer system for embolization. Biomacromolecules 7, 2059-2064. https://doi.org/10.1021/bm060211h
  59. Lee, E., Kwon, M., Na, K., Bae, J., 2007a. Protein release behavior from porous microparticle with lysozyme/hyaluronate ionic complex. Colloids and Surfaces B: Biointerfaces 55, 125-130. https://doi.org/10.1016/j.colsurfb.2006.11.024
  60. Lee, F., Chung, J., Kurisawa, M., 2009. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. Journal of Controlled Release 134, 186-193. https://doi.org/10.1016/j.jconrel.2008.11.028
  61. Lee, H., Mok, H., Lee, S., Oh, Y., Park, T., 2007b. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of Controlled Release 119, 245-252. https://doi.org/10.1016/j.jconrel.2007.02.011
  62. Lim, S., Martin, G., Berry, D., Brown, M., 2000. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. Journal of Controlled Release 66, 281-292. https://doi.org/10.1016/S0168-3659(99)00285-0
  63. Lin, Q.-K., Ren, K.-F., Ji, J., 2009. Hyaluronic acid and chitosan-DNA complex multilayered thin film as surface-mediated nonviral gene delivery system. Colloids and Surfaces B: Biointerfaces 74, 298-303. https://doi.org/10.1016/j.colsurfb.2009.07.036
  64. Ludwig, A., 2005. The use of mucoadhesive polymers in ocular drug delivery. Advanced drug delivery reviews 57, 1595-1639. https://doi.org/10.1016/j.addr.2005.07.005
  65. Luo, Y., Bernshaw, N., Lu, Z., Kopecek, J., Prestwich, G., 2002. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharmaceutical research 19, 396-402. https://doi.org/10.1023/A:1015170907274
  66. Luo, Y., Kirker, K., Prestwich, G., 2000. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. Journal of Controlled Release 69, 169-184. https://doi.org/10.1016/S0168-3659(00)00300-X
  67. Lutolf, M., Lauer-Fields, J., Schmoekel, H., Metters, A., Weber, F., Fields, G., Hubbell, J., 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proceedings of the National Academy of Sciences of the United States of America 100, 5413. https://doi.org/10.1073/pnas.0737381100
  68. Maeda, H., Seymour, L., Miyamoto, Y., 1992. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjugate chemistry 3, 351-362. https://doi.org/10.1021/bc00017a001
  69. Marshall, K., 2000. Intra-articular hyaluronan therapy. Current opinion in rheumatology 12, 468. https://doi.org/10.1097/00002281-200009000-00022
  70. Matsubara, Y., Katoh, S., Taniguchi, H., Oka, M., Kadota, J., Kohno, S., 2000. Expression of CD44 Variants in Lung Cancer and Its Relationship to Hyaluronan Binding. The Journal of International Medical Research 28, 78-90. https://doi.org/10.1177/147323000002800203
  71. Mok, H., Park, J., Park, T., 2007. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjugate Chem 18, 1483-1489. https://doi.org/10.1021/bc070111o
  72. Morimoto, K., Yamaguchi, H., Iwakura, Y., Morisaka, K., Ohashi Y., Nakai, Y., 1991. Effects of viscous hyaluronate-sodium solutions on the nasal absorption of vasopressin and an analogue. Pharmaceutical research 8, 471-474. https://doi.org/10.1023/A:1015894910416
  73. Moriyama, K., Ooya, T., Yui, N., 1999. Hyaluronic acid grafted with poly (ethylene glycol) as a novel peptide formulation. Journal of Controlled Release 59, 77-86. https://doi.org/10.1016/S0168-3659(98)00183-7
  74. Necas, J., Bartosikova, L., Brauner, P., Kolar, J., 2008. Hyaluronic acid (hyaluronan): a review. Veterinarni Medicina 53, 397-411.
  75. Oh, E., Park, K., Kim, K., Kim, J., Yang, J., Kong, J., Lee, M., Hoffman, A., Hahn, S., 2010. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. Journal of Controlled Release 141, 2-12. https://doi.org/10.1016/j.jconrel.2009.09.010
  76. Ohri, R., Hahn, S., Hoffman, A., Stayton, P., Giachelli, C., 2004. Hyaluronic acid grafting mitigates calcification of glutaraldehyde-fixed bovine pericardium. Journal of Biomedical Materials Research Part A 70, 328-334.
  77. Park, J., Chakrabarti, B., 1978. Conformational transition of hyaluronic acid carboxylic group participation and thermal effect. Biochimica et Biophysica Acta (BBA)-General Subjects 541, 263-269. https://doi.org/10.1016/0304-4165(78)90399-9
  78. Peer, D., Margalit, R., 2004. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. International Journal of Cancer 108, 780-789. https://doi.org/10.1002/ijc.11615
  79. Prestwich, G., Marecak, D., Marecek, J., Vercruysse, K., Ziebell, M., 1998. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. Journal of Controlled Release 53, 93-103. https://doi.org/10.1016/S0168-3659(97)00242-3
  80. Price, R., Berry, M., Navsaria, H., 2007. Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery 60, 1110-1119. https://doi.org/10.1016/j.bjps.2007.03.005
  81. Prisell, P., Camber, O., Hiselius, J., Norstedt, G., 1992. Evaluation of hyaluronan as a vehicle for peptide growth factors. International Journal of Pharmaceutics 85, 51-56. https://doi.org/10.1016/0378-5173(92)90133-M
  82. Rydell, N., Balazs, E., 1971. Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of osteoarthritis and on granulation tissue formation. Clinical Orthopaedics and Related Research 80, 25. https://doi.org/10.1097/00003086-197110000-00006
  83. Saraf, A., Hacker, M., Sitharaman, B., Grande-Allen, K., Barry, M., Mikos, A., 2008. Synthesis and conformational evaluation of a novel gene delivery vector for human mesenchymal stem cells. Biomacromolecules 9, 818-827. https://doi.org/10.1021/bm701146f
  84. Schiffelers, R., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P., Scaria, P., Woodle, M., 2004. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic acids research 32, e149. https://doi.org/10.1093/nar/gnh140
  85. Segura, T., 2005. DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials 26, 1575-1584. https://doi.org/10.1016/j.biomaterials.2004.05.007
  86. Shim, W., Yoo, J., Bae, Y., Lee, D., 2005. Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 6, 2930-2934. https://doi.org/10.1021/bm050521k
  87. Shu, X., Liu, Y., Luo, Y., Roberts, M., Prestwich, G., 2002. Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3, 1304-1311. https://doi.org/10.1021/bm025603c
  88. Singh, M., Briones, M., O'Hagan, D., 2001. A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. Journal of Controlled Release 70, 267-276. https://doi.org/10.1016/S0168-3659(00)00330-8
  89. Sintzel, M., Bernatchez, S., Tabatabay, C., Gurny, R., 1996. Biomaterials in ophthalmic drug delivery. European journal of pharmaceutics and biopharmaceutics 42, 358-374.
  90. Sun, X., Ma, P., Cao, X., Ning, L., Tian, Y., Ren, C., 2009. Positive hyaluronan/PEI/DNA complexes as a target-specific intracellular delivery to malignant breast cancer. Drug Delivery 16, 357-362. https://doi.org/10.1080/10717540903059549
  91. Surace, C., Arpicco, S., Dufay -Wojcicki, A., Marsaud, V., Bouclier, C., Clay, D., Cattel, L., Renoir, J., Fattal, E., 2009. Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Molecular Pharmaceutics 6, 1062-1073. https://doi.org/10.1021/mp800215d
  92. Surendrakumar, K., Martyn, G., Hodgers, E., Jansen, M., Blair, J., 2003. Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. Journal of Controlled Release 91, 385-394. https://doi.org/10.1016/S0168-3659(03)00263-3
  93. Takei, Y., Maruyama, A., Ferdous, A., Nishimura, Y., Kawano, S., Ikejima, K., Okumura, S., Asayama, S., Nogawa, M., Hashimoto, M., 2004. Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronanglycocalyx. The FASAB Journal 18: 699-701. https://doi.org/10.1096/fj.03-0494fje
  94. Tammi, R., Ripellino, J., Margolis, R., Tammi, M., 1988. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. Journal of Investigative Dermatology 90, 412-414. https://doi.org/10.1111/1523-1747.ep12456530
  95. Tracy, M., 1998. Development and scale-up of a microsphere protein delivery system. Biotechnology progress 14, 108-115. https://doi.org/10.1021/bp9701271
  96. Turker, S., Onur, E., Ozer, Y., 2004. Nasal route and drug delivery systems. Pharmacy World & Science 26, 137-142. https://doi.org/10.1023/B:PHAR.0000026823.82950.ff
  97. Ugwoke, M., Agu, R., Verbeke, N., Kinget, R., 2005. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Advanced drug delivery reviews 57, 1640-1665. https://doi.org/10.1016/j.addr.2005.07.009
  98. Upadhyay, K.K., Bhatt, A.N, Mishra, A.K., Dwarakanath, B.S., Jain, S., Schatz, C., Le Meins, J.-F., Farooque, A., Chandraiah, G., Jain, A.K., 2010. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(${\gamma}$-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials 31, 2882-2892. https://doi.org/10.1016/j.biomaterials.2009.12.043
  99. Varma, R., Varma, R., Allen, W., Wardi, A., 1975. Human umbilical cord hyaluronate neutral sugar content and carbohydrateprotein linkage studies. Biochimica et Biophysica Acta (BBA)-General Subjects 399, 139-144. https://doi.org/10.1016/0304-4165(75)90220-2
  100. West, D., Hampson, I., Arnold, F., Kumar, S., 1985. Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324-1326. https://doi.org/10.1126/science.2408340
  101. Wieland, J., Houchinray, T., Shea, L., 2007. Non-viral vector delivery from PEG-hyaluronic acid hydrogels. Journal of Controlled Release 120, 233-241. https://doi.org/10.1016/j.jconrel.2007.04.015
  102. Wilson, A., Zhou, W., Champion, H., Alber, S., Tang, Z., Kennel, S., Watkins, S., Huang, L., Pitt, B., Li, S., 2005. Targeted delivery of oligodeoxynucleotides to mouse lung endothelial cells in vitro and in vivo. Molecular Therapy 12, 510-518. https://doi.org/10.1016/j.ymthe.2005.04.005
  103. Xie, Y., Aillon, K.L., Cai, S., Christian, J.M, Davies NM, Berkland CJ, Forrest ML. 2010. Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer. International Journal of Pharmaceutics 392, 156-163. https://doi.org/10.1016/j.ijpharm.2010.03.058
  104. Xu, P., Quick, G.K., Yeo, Y., 2009. Gene delivery through the use of a hyaluronate-associated intracellularly degradable crosslinked polyethyleneimine. Biomaterials 30, 5834-5843. https://doi.org/10.1016/j.biomaterials.2009.07.012
  105. Yenice, I., Mocan, M., Palaska, E., Bochot, A., Bilensoy, E., Vural, I., Irkec, M., Atillahincal, A., 2008. Hyaluronic acid coated poly--caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Experimental Eye Research 87, 162-167. https://doi.org/10.1016/j.exer.2008.04.002
  106. Yokota, A., Ishii, G., Sugaya, Y., Nishimura, M., Saito, Y., Harigaya, K., 1999. Potential use of serum CD44 as an indicator of tumour progression in acute leukemia. Hematological Oncology 17, 161-168. https://doi.org/10.1002/(SICI)1099-1069(199912)17:4<161::AID-HON646>3.0.CO;2-Y
  107. Yun, Y., 2004. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 25, 147-157. https://doi.org/10.1016/S0142-9612(03)00467-8

Cited by

  1. Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications vol.102, pp.9, 2013, https://doi.org/10.1002/jbm.a.34976
  2. Effectiveness of Losartan-Loaded Hyaluronic Acid (HA) Micelles for the Reduction of Advanced Hepatic Fibrosis in C3H/HeN Mice Model vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0145512
  3. Interactions of Hyaluronic Acid with the Skin and Implications for the Dermal Delivery of Biomacromolecules vol.12, pp.5, 2015, https://doi.org/10.1021/mp500676e
  4. Preparation of novel hybrid gels from polyaspartamides and natural alginate or hyaluronate by click reaction vol.22, pp.3, 2015, https://doi.org/10.1007/s10965-014-0649-3
  5. Comparison of the Cytotoxicities and Wound Healing Effects of Hyaluronan, Carbomer, and Alginate on Skin Cells In Vitro vol.28, pp.9, 2015, https://doi.org/10.1097/01.ASW.0000467303.39079.59
  6. Nanogels for delivery, imaging and therapy vol.7, pp.4, 2015, https://doi.org/10.1002/wnan.1328
  7. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications vol.13, pp.9, 2016, https://doi.org/10.1080/17425247.2016.1182492
  8. Fluorescence study of freeze-drying as a method for support the interactions between hyaluronan and hydrophobic species vol.12, pp.9, 2017, https://doi.org/10.1371/journal.pone.0184558
  9. Influence of hyaluronic acid on the formation of isolated poly(vinyl acetate) films for oral solid coatings vol.134, pp.20, 2017, https://doi.org/10.1002/app.44815
  10. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles vol.21, pp.9, 2017, https://doi.org/10.1111/jcmm.13110
  11. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives vol.11, pp.17, 2016, https://doi.org/10.2217/nnm-2016-0117
  12. Biocompatibility of Gd-Loaded Chitosan-Hyaluronic Acid Nanogels as Contrast Agents for Magnetic Resonance Cancer Imaging vol.8, pp.4, 2018, https://doi.org/10.3390/nano8040201
  13. Electroconductive hyaluronic acid/gelatin/poly(ethylene oxide) polymeric film reinforced by reduced graphene oxide pp.00218995, 2019, https://doi.org/10.1002/app.46905
  14. Polysaccharide Based Nanoparticles vol.58, pp.12, 2018, https://doi.org/10.1002/ijch.201800051