• Title/Summary/Keyword: Gene chip

Search Result 259, Processing Time 0.04 seconds

Association of Hepatocyte Nuclear factor-4α Polymorphisms with Type 2 Diabetes in Koreans (한국인에서의 hepatocyte nuclear factor-4α의 유전자 다형성과 제2형 당뇨병과의 연관성)

  • Kim, Su-Won;Yoo, Min
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.362-365
    • /
    • 2009
  • Type 2 diabetes is a typical polygenic disease complex, for which several common risk alleles have been identified. The hepatocyte nuclear factor-$4{\alpha}$ (HNF-$4{\alpha}$), a transcription factor involved in the regulation of serum lipid and glucose levels, has recently been associated with type 2 diabetes. Therefore, we investigated the genotype for the C>T polymorphism at position 12352 of the HNF-$4{\alpha}$ gene in Koreans and compared patient genotypes with those of the control group. 100 patients (63 males, 37 females) with a history of type 2 diabetes (T2DM) and 100 controls (36 males, 64 females) participated in this study. There was no association between 12352 C>T polymorphism in the HNF-$4{\alpha}$ gene and T2DM. The present study shows that HNF-$4{\alpha}$ 12352 C>T polymorphism may not be associated with the pathogenesis of T2DM. Further studies with larger populations may be needed for the development of diagnostic methods at a genetic level such as DNA chip.

Regulation of Pipernonaline on Biological Functions of Human Prostate Cancer Cells Based on Microarray Analysis (Microarray를 이용한 pipernonaline의 인간 전립선 암세포에 대한 기능 조절 분석)

  • Kim, Sang-Hun;Kim, Kwang-Youn;Yu, Sun-Nyoung;Park, Seul-Ki;Kwak, In-Seok;Rhee, Moon-Soo;Bang, Byung-Ho;Chun, Sung-Sik;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1552-1557
    • /
    • 2012
  • It has been reported that pipernonaline isolated from Piper longum Linn. has a wide biochemical and pharmacological effect, including antitumor activity in prostate cancer PC-3 cells. However, its mechanism and expression pattern of many genes involved in biological functions are not clearly understood. To perform the gene expression study in PC-3 cells treated with pipernonaline, a cDNA microarray chip composed of 44,000 human cDNA probes was used. As a result, cell cycle-related genes, apoptosis-related genes, and cell proliferation/growth-related genes have been identified in gene ontology of the DAVID database. These results suggest that pipernonaline has antitumor activity by regulating the expression pattern of genes involved in biological signaling pathway in prostate cancer PC-3 cells. Further, additional analysis of these microarray data can be a useful tool to identify the mechanism and discovery of novel genes in cancer therapy.

Microarray analysis of gene expression in raw cells treated with scolopendrae corpus herbal-acupuncture solution (蜈蚣(오공) 약침액(藥鍼液)이 LPS로 처리된 RAW 세포주(細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Bae, Eun-Hee;Lee, Kyung-Min;Lee, Bong-Hyo;Lim, Seong-Chul;Jung, Tae-Young;Seo, Jung-Chul
    • Korean Journal of Acupuncture
    • /
    • v.23 no.3
    • /
    • pp.133-160
    • /
    • 2006
  • Objectives : Scolopendrae Corpus has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as arthritis. To explore the global gene expression profiles in human Raw cell lines treated with Scolopendrae Corpus herbal-acupuncture solution (SCHAS), cDNA microarray analysis was performed. Methods : The Raw 264.7 cells were treated with lipopolysaccharide (LPS), SCHAS, or both. The primary data was normalized by the total spots of intensity between two groups, and then normalized by the intensity ratio of reference genes such as housekeeping genes in both groups. The expression ratio was converted to log2 ratio. Normalized spot intensities were calculated into gene expression ratios between the control and treatment groups. Greater than 2 fold changes between two groups were considered to be of significance. Results : Of the 8 K genes profiled in this study, with a cut-off level of two-fold change in the expression, 20 genes (BCL2-related protein A1, MARCKS-like 1, etc.) were upregulated and 5 genes (activated RNA polymerase II transcription cofactor 4, calcium binding atopy-related autoantigen 1, etc.) downregulated following LPS treatment. 139 genes (kell blood group precursor (McLeod phenotype), ribosomal protein S7, etc.) were upregulated and 42 genes (anterior gradient 2 homolog (xenopus laevis), phosphodiesterase 8B, etc.) were downregulated following SCHAS treatment. And 10 genes (yeast saccharomyces cerevisiae intergeneic sequence 4-1, mitogen-activated protein kinase 1, etc.) were upregulated and 8 genes (spermatid perinuclear RNA binding protein, nuclear receptor binding protein 2, etc.) were downregulated following co-stimulation of SCHAS and LPS. Discussions : It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacological actions of SCHAS in the treatment of arthritis. But further studies are required to concretely prove the effectiveness of SCHAS.

  • PDF

Microarray Analysis of Gene Expression Affected by Water-extracts of Pinelliae rhizoma in a Hypoxic Model of Cultured Rat Cortical Cells (배양대뇌신경세포 저산소증모델에서 반하여 의한 유전자표현의 변화)

  • Kwon, Gun-Rok;Jung, Hyun-Jung;Shin, Gil-Jo;Moon, Il-Soo;Lee, Won-Chul;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.905-916
    • /
    • 2009
  • Pinelliae rhizoma (Pr, 半夏) is a traditional medicine used in the treatment of incipient stroke. We investigated the effects of Pr on gene expression in a hypoxic model using cultured rat cortical cells. Pr (2.5 $\mu$g/ml) was added to the culture medium on DIV 12. A hypoxic shock (2% 0$_2$/5% CO$_2$, 37$^{\circ}$C, 3 hr) was given two days later (on DIV 14), and total mRNAs were isolated at 24 hr post-shock from both Pr-treated samples and untreated control cultures. Microarray using TwinChip $^{TM}$ Rat-5K (Digital Genomics, Seoul) indicated that Pr upregulated genes for cell growth and differentiation (tubb5, tgfa, ptpn11, n-ras, pdgfa) and antiapoptosis (mcl-1), while downregulating the apoptosis-induced gene (tieg). Therefore, it is interpreted that Pr protects neurons from hypxoic shock by maintaining cell growth and differentiation and by preventing apoptosis.

xCyp26c Induced by Inhibition of BMP Signaling Is Involved in Anterior-Posterior Neural Patterning of Xenopus laevis

  • Yu, Saet-Byeol;Umair, Zobia;Kumar, Shiv;Lee, Unjoo;Lee, Seung-Hwan;Kim, Jong-Il;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.352-357
    • /
    • 2016
  • Vertebrate neurogenesis requires inhibition of endogenous bone morphogenetic protein (BMP) signals in the ectoderm. Blocking of BMPs in animal cap explants causes the formation of anterior neural tissues as a default fate. To identify genes involved in the anterior neural specification, we analyzed gene expression profiles using a Xenopus Affymetrix Gene Chip after BMP-4 inhibition in animal cap explants. We found that the xCyp26c gene, encoding a retinoic acid (RA) degradation enzyme, was upregulated following inhibition of BMP signaling in early neuroectodermal cells. Whole-mount in situ hybridization analysis showed that xCyp26c expression started in the anterior region during the early neurula stage. Overexpression of xCyp26c weakly induced neural genes in animal cap explants. xCyp26c abolished the expression of all trans-/cis-RA-induced posterior genes, but not basic FGF-induced posterior genes. Depletion of xCyp26c by morpholino-oligonucleotides suppressed the normal formation of the axis and head, indicating that xCyp26c plays a critical role in the specification of anterior neural tissue in whole embryos. In animal cap explants, however, xCyp26c morpholinos did not alter anterior-to-posterior neural tissue formation. Together, these results suggest that xCyp26c plays a specific role in anterior-posterior (A-P) neural patterning of Xenopus embryos.

Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity

  • Kim, Minjeong;Yun, Jun-Won;Shin, Kyeho;Cho, Yejin;Yang, Mijeong;Nam, Ki Taek;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.112-121
    • /
    • 2017
  • Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix $GeneChip^{(R)}$ Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage (배추의 건조 저항성 유전자, BrDSR의 기능 검정)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.102-111
    • /
    • 2016
  • The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

The association of PBX1 polymorphisms with overweight/obesity and metabolic alterations in the Korean population

  • Ban, Ju-Yeon;Kang, Soon-Ah;Jung, Kyung-Hee;Kim, Hak-Jae;Uhm, Yoon-Kyung;Kim, Su-Kang;Yim, Sung-Vin;Choe, Bong-Keun;Hong, Seung-Jae;Seong, Yeon-Hee;Koh, In-Song;Chung, Joo-Ho
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • Pre-B-cell leukemia transcription factor 1 (PBX1), which is located on chromosome 1q23, was recently reported to be associated with type 2 diabetes mellitus. We examined whether single nucleotide polymorphisms (SNPs) of the PBX1 gene are associated with overweight/obesity in a Korean population. We genotyped 66 SNPs in the PBX1 gene and investigated their association with clinical phenotypes found in 214 overweight/obese subjects and 160 control subjects using the Affymetrix Targeted Genotyping chip array. Seven SNPs (g.+75l86C>T, g.+78350C>A, g.+80646C>T, g.+138004C>T, g.+185219G>A, g.+191272A>C, and g.+265317T>A) were associated with the risk of obesity in three models (codominant, dominant, and recessive) (P=0.007-0.05). Haplotype 1 (CAC) and 3 (TAC) of block 3 and haplotype 2 (GGAAT) of block 10 were also strongly associated with the risk of obesity. In the control group, subjects that had homozygote for the major allele for both g.+185219G>A and g.+191272A>C showed lower high density lipoprotein-cholesterol (HDL-C) level compared to those possessing the minor allele, suggesting that the association between the homozygote for the major allele for both g.+185219G>A and g.+191272A>C and HDL-C is attributable to the increased risk of obesity. This study suggests that the PBX1 gene is a possible risk factor in overweight/obese patients.

Improvement of Pre-harvest Sprouting Resistance in Korean japonica Varieties through a Precision Marker-based Breeding

  • Kamal Bhattarai;Patricia Izabelle Lopez;Sherry Lou Hechanova;Ji-Ung Jeung;Hyun-Sook Lee;Eok-Keun Ahn;Ung-Jo Hyun;Jong-Hee Lee;So-Myeong Lee;Jose E. Hernandez;Sung-Ryul Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.269-269
    • /
    • 2022
  • Pre-harvest sprouting (PHS) on rice panicles is getting problematic in recent several years in Korea due to climate changes such as high temperature and more frequent typhoons during harvesting season. PHS negatively affects grain quality severely and also yield. Genetic improvement of Korean varieties (Oryza sativa ssp. japonica) through a marker assisted-backcross breeding (MAB) with the known PHS resistant genes must be one of ideal solutions. However, the final breeding products of MAB occasionally exhibit unwanted traits, especially the cross between genetically distant parents. This might be caused by linkage drag and/or presence of the gene-unlinked donor introgressions, resulting that the final products could not be released to the farmers. The major PHS resistance gene, Sdr4 (Seed dormancy 4) originated from an indica cultivar, Kasalath was selected as a donor gene. In order to avoid unexpected phenotypes in the breeding products, we performed a precision marker-based breeding (PMBB) consisting of foreground, recombinant, and background selections (FS, RS, and BS) which aim to develop 'single small introgression lines' (~100 kb introgression). Korean varieties (Ilpum and Gopum) were crossed with Kasalath. We developed Sdr4-allele specific markers for FS and a set of polymorphic flanking markers near the Sdr4 (-350kb and +420kb) for RS. To minimize linkage drag, the small introgression (< 125kb) containing Sdr4 was selected in Ilpum background (BC2F4) through 1st RS with ~1,200 F2 or BC1F2 plants (one side trimmed) and then 2nd RS with ~1,000 progenies from the 1st RS selected plants (another side trimmed). After RS, the selected lines were genotyped by using Infinium 7K SNP chip to detect other donor introgressions and the lines were backcrossed. Currently BS is on-going from the backcross-derived progenies with BS markers to remove residual introgressions. During the PMBB process, genetic effect of Sdr-4-Kasalath allele was confirmed in Ilpum and Gopum backgrounds by PHS phenotyping using the segregating BC2F3 or BC1F4 materials. The Sdr4 PMBB lines in Ilpum background (< 125kb introgression) will be valuable genetic resources to improve PHS resistance in modem popular temperate japonica varieties.

  • PDF

Identification of DNA Methylation Markers for NSCLC Using Hpall-Mspl Methylation Microarray (Hpall-Mspl Methylation Microarray를 이용한 비소세포폐암의 DNA Methylation Marker 발굴)

  • Kwon, Mi Hye;Lee, Go Eun;Kwon, Sun Jung;Choi, Eugene;Na, Moon Jun;Cho, Hyun Min;Kim, Young Jin;Sul, Hye Jung;Cho, Young Jun;Son, Ji Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.495-503
    • /
    • 2008
  • Background: Epigenetic alterations in certain genes are now known as at least important as genetic mutation in pathogenesis of cancer. Especially abnormal hypermethylation in or near promoter region of tumor suppressor genes (TSGs) are known to result in gene silencing and loss of gene function eventually. The authors tried to search for new lung cancer-specific TSGs which have CpG islands and HpaII sites, and are thought to be involved in carcinogenesis by epigenetic mechanism. Methods: Tumor tissue and corresponding adjacent normal tissue were obtained from 10 patients who diagnosed with non small cell lung cancer (NSCLC) and underwent surgery in Konyang university hospital in 2005. Methylation profiles of promoter region of 21 genes in tumor tissue & non-tumor tissue were examined with HpaII-MspI methylation microarray (Methyl-Scan DNA chip$^{(R)}$, Genomic tree, Inc, South Korea). The rates of hypermethylation were compared in tumor and non-tumor group, and as a normal control, we obtained lung tissue from two young patients with pneumothorax during bullectomies, methylation profiles were examined in the same way. Results: Among the 21 genes, 10 genes were commonly methylated in tumor, non-tumor, and control group. The 6 genes of APC, AR, RAR-b, HTR1B, EPHA3, and CFTR, among the rest of 11 genes were not methylated in control, and more frequently hypermethylated in tumor tissue than non-tumor tissue. Conclusion: In the present study, HTR1B, EPHA3, and CFTR are suggested as possible novel TSGs of NSCLC by epigenetic mechanism.