• Title/Summary/Keyword: Gene Screening

Search Result 792, Processing Time 0.032 seconds

Functional Identification of Ginkgo biloba 1-Deoxy-D-xylulose 5-Phosphate Synthase (DXS) Gene by Using Escherichia coli Disruptants Defective in DXS Gene

  • Kim, Sang-Min;Kuzuyama, Tomohisa;Chang, Yung-Jin;Kim, Soo-Un
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.101-104
    • /
    • 2005
  • DXS catalyzes the first step of MEP pathway. Escherichia coli disruptants defective in dxs were constructed by insertional mutation and characterized. Selected disruptant, DXM3, was auxotrophic for DX or ME. Putative class 1 DXS ORF from Ginkgo biloba was shown to rescue DXM3 grown without DX or ME supplementation. The putative ORF was thus confirmed as DXS1. The disruptant was demonstrated to be useful for DSX screening.

Expression of diligent protein and Pinoresinol/Lariciresinol reductase genes of forsythia in transgenic potatoes

  • Chuong, Tran-Van;Kim, Hyun-Soon;Park, Ji-Young;Joung, Jae-Youl;Youm, Jung-Won;Jeon, Jae-Heung
    • Plant Resources
    • /
    • v.4 no.3
    • /
    • pp.181-188
    • /
    • 2001
  • We tried to introduce two forsythia genes related in lignan biosynthesis, dirigent protein and pinoresinol/lariciresinol (Ph) reductase, into potatoes for accumulation of lignans in transgenic potatoes. We made binary vectors overexpressing dirigent protein gene and P/L reductase gene driven by a CaMV35S promoter and transformed into potatoes via Agrobacterium mediated transformation. And in order to control the metabolic flux of lignan biosynthesis pathway, we tried to inhibit chalcone synthase genes of potatoes by antisense inhibition technique also. We tried to use PCR screening method for selection of transgenic plants of different vectors. We tried to determine and compare lignan contents from different transgenic potato lines.

  • PDF

Identification of LAMP2 mutations in early-onset hypertrophic cardiomyopathy by targeted exome sequencing

  • Gill, Inkyu;Kim, Ja Hye;Moon, Jin-Hwa;Kim, Yong Joo;Kim, Nam Su
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.87-91
    • /
    • 2018
  • X-linked dominant mutations in lysosome-associated membrane protein 2 (LAMP2) gene have been shown to be the cause of Danon disease, which is a rare disease associated with clinical triad of cardiomyopathy, skeletal myopathy, and mental retardation. Cardiac involvement is a common manifestation and is the leading cause of death in Danon disease. We report a case of a 24-month-old boy with hemizygous LAMP2 mutation who presented with failure to thrive and early-onset hypertrophic cardiomyopathy. We applied targeted exome sequencing and found a novel hemizygous c.692del variant in exon 5 of the LAMP2 gene, resulting a frameshift mutation p.Thr231Ilefs*11. Our study indicates that target next-generation sequencing can be used as a fast and highly sensitive screening method for inherited cardiomyopathy.

Exonic copy number variations in rare genetic disorders

  • Man Jin Kim
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2023
  • Exonic copy number variation (CNV), involving deletions and duplications at the gene's exon level, presents challenges in detection due to their variable impact on gene function. The study delves into the complexities of identifying large CNVs and investigates less familiar but recurrent exonic CNVs, notably enriched in East Asian populations. Examining specific cases like DRC1, STX16, LAMA2, and CFTR highlights the clinical implications and prevalence of exonic CNVs in diverse populations. The review addresses diagnostic challenges, particularly for single exon alterations, advocating for a strategic, multi-method approach. Diagnostic methods, including multiplex ligation-dependent probe amplification, droplet digital PCR, and CNV screening using next-generation sequencing data, are discussed, with whole genome sequencing emerging as a powerful tool. The study underscores the crucial role of ethnic considerations in understanding specific CNV prevalence and ongoing efforts to unravel subtle variations. The ultimate goal is to advance rare disease diagnosis and treatment through ethnically-specific therapeutic interventions.

Genetic Mapping and Sequence Analysis of the Gene Encoding the Major Capsid Protein of Bacteriophage E3 (박테리오파지 E3의 Major Capsid Protein을 만드는 유전자의 Mapping 및 염기서열 분석)

  • Bae, Soo-Jin;Myung, Hee-Joon
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.266-269
    • /
    • 1999
  • Bacteriophage E3 grows very rapidly and forms a large size plaque with a diameter of 1 cm. The promoter controlling the expression of the gene encoding the major capsid protein is thought to be most efficient. To find out this promoter, this gene was mapped in the genome according to the following procedure. The major capsid protein was purified from phage particle and the N-terminal amino acid sequence was revealed. Based on this sequence,a degernerate oligonucleotide probe was designed and used for screening of the genomic DNA fragments. From the DNA sequence of the selected clone, the gene encoding the major capsid protein was mapped at 70% of E3 genome. The expression of this gene was not sensitive to rifampicin which indicated the presence of E3's own RNA polymerase.

  • PDF

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

Molecular diagnosis of spinal muscular atrophy

  • Lee, Ki-Sun;Hwang, Hee-Yu;Lee, Key-Hyoung;Park, Moon-Sung;Hahn, Si-Houn;Hong, Chang-Ho
    • Journal of Genetic Medicine
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 1997
  • Spinal muscular atrophy (SMA) is the second most common fatal disease of childhood with autosomal dominant mode of inheritance, and in its less severe form the third most common neuromuscular disease of childhood after Duchenne muscular dystrophy. The genetic defect was found to be on the long arm of chromosome 5 (5q11.2-q13.3) where many genes and microsatellite markers were missing. One of the most important genes is the Survival Motor Neuron (SMN) gene which is homozygously missing in 90% of SMA patients. Another important gene, the Neuronal Apoptosis Inhibitory Protein (NAIP) gene was found to be defective in 67% of SMA type I patients. Studies so far suggest SMA occurs when the genes on the long arm of chromosome 5 are mutated or deleted. Recently our hospital encountered 2 SMA patients of type I and II respectively. These patients both had homozygously defective SMN genes but intact NAIP genes. We are reporting these cases with bibliographic review and discussion. Korean SMA patients presumably have defects in SMN genes similar to those found in European patients, although the significance of NAIP genes remains to be established. SMN gene defects can be easily diagnosed using PCR and restriction enzymes, and this method could be applied towards convenient prenatal diagnosis and towards screening for family members at risk.

  • PDF

Screening of Differentially Expressed Genes Related to Bladder Cancer and Functional Analysis with DNA Microarray

  • Huang, Yi-Dong;Shan, Wei;Zeng, Li;Wu, Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4553-4557
    • /
    • 2013
  • Objective: The purpose of this study was to identify genes related to bladder cancer with samples from normal and disease cases by microarray chip. Methods: After downloading the gene expression profile GSE3167 from Gene Expression Omnibus database which includes 50 bladder samples, comprising 9 normal and 41 disease samples, differentially expressed genes were identified with packages in R language. The selected differentially expressed genes were further analyzed using bioinformatics methods. Firstly, molecular functions, biological processes and cell component analysis were researched by software Gestalt. Then, software String was used to search interaction relationships among differentially expressed genes, and hub genes of the network were selected. Finally, by using plugins of software Cytoscape, Mcode and Bingo, module analysis of hub-genes was performed. Results: A total of 221 genes were identified as differentially expressed by comparing normal and disease bladder samples, and a network as well as the hub gene C1QBP was obtained from the network. The C1QBP module had the closest relationship to production of molecular mediators involved in inflammatory responses. Conclusion: We obtained differentially expressed genes of bladder cancer by microarray, and both PRDX2 and YWHAZ in the module with hub gene C1QBP were most significantly related to production of molecular mediators involved in inflammatory responses. From knowledge of inflammatory responses and cancer, our results showed that, the hub gene and its module could induce inflammation in bladder cancer. These related genes are candidate bio-markers for bladder cancer diagnosis and might be helpful in designing novel therapies.

Transformation of Brassica napus with Acid Phosphatase Gene (Acid Phosphatase 유전자 도입에 의한 유채의 형질 전환)

  • Lee, Hyo-Shin;Son, Dae-Young;Jo, Jin-Ki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.285-292
    • /
    • 1997
  • This study was conducted to obtain the transgenic Brnssica napus plants with tobacco Apase gene using the binary vector system of Agrobacteriurn fumefociens. The results obtained were summarized as follows: A repressible acid phosphatase gene of Saccharon~yces cerevisiae, pho105 was used for screening of tobacco Apase cDNA. In order to identify Apase gene in tobacco genome, Southern blot analysis was pcrformed and the Apase gcnc may be present as a single copy, or at most two or three copies, in tobacco genome. To isolate the tobacco Apase gene, tobacco cDNA library was constructed using purifed mRNA from -Pi treated tobacco root and the plaque forming unit of the library was 2.8 x $10^5$ pfu/m${\ell}$, therefore the library might cover all expressed mRNAs. Using pho5 as a probe. tobacco Apase cDNA was cloned, and restriction mapping and Southern blot analysis of cDNA insert were revealed that the 3.6 kb cDNA contained tobacco acid phosphatase cDNA. Plasmid pGA695 -tcAPl was constructed by subcloning tobacco Apase cDNA into the Hind site of pGA695 with 35s promoter which can be expressed constitutively in plants. The Brassica napus cotyledonary petioles were cocultivated with the ,4 grobacteriunz and transferred to the selection medium. The transformed and regenerated plants were transplanted to soil medium. Southern blot analysis was done on the transformed plants, and it was confirmed that a foregin gene was stably integrated into the genonies of B. nnpus plants.

  • PDF

Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species

  • Ogaki, Mayara Baptistucci;Rocha, Katia Real;Terra, Marcia Regina;Furlaneto, Marcia Cristina;Furlaneto-Maia, Luciana
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1026-1034
    • /
    • 2016
  • In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene+ strains") were screened for antimicrobial activity. A total of 82.5% of the Gene+ strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.