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DXS catalyzes the first step of MEP pathway. Escherichia coli disruptants defective in dxs were
constructed by insertional mutation and characterized. Selected disruptant, DXM3, was auxotrophic
for DX or ME. Putative class 1 DXS ORF from Ginkgo biloba was shown to rescue DXM3 grown
without DX or ME supplementation. The putative ORF was thus confirmed as DXS1. The disruptant
was demonstrated to be useful for DSX screening.
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Isoprenoids are assembled from the five-carbon building

units, IPP and its isomer DMAPP. Biosynthesis of isoprenoids

is essential for the survival of all organisms. IPP and DMAPP

were initially thought to be biosynthesized only through the

mevalonate pathway discovered in 1950s. However, recent

discovery of the non-mevalonate pathway led to the study of

terpenoid biosynthesis in new perspective.1) The new MEP

pathway, named based on its key intermediate MEP, was

completely elucidated in E. coli.2-6) Mevalonate pathway was

found to operate in animal cells, whereas most eubacteria and

cyanobacteria employ MEP pathway. On the other hand,

plants can use both pathways for the synthesis of isoprenoids.9)

MEP pathway has since become a new target for herbicides,

antibiotics, and antimalarial drugs.10,11)

Seven biochemical steps are necessary for the conversions

of pyruvate and GAP into IPP.2-8) Briefly, DXP is produced

from condensations of pyruvate and GAP by DXS, and DXP

is reductively isomerized to produce MEP. In the next step,

cytidyl group is transferred to MEP, and MEP moiety is then

phosphorylated and cyclized to yield MECDP. Finally, IPP is

synthesized from 1-hydroxy-2-methyl-2-(E)-butenyl 4-

diphosphate, a reductive product of MECDP (Fig. 1).

As stated above, DXS is responsible for the first reaction of

MEP pathway. DXS’s from several plants were cloned and

classified into classes 1 and 2, DXS1 and DXS2.12) DXS1,

mainly expressed in the plant leaves, was postulated to

function as a household enzyme, whereas DXS2 is expressed

in the roots for carotenoid biosynthesis.12) The plant DXS

having plastid targeting sequence at the N-terminal region

posed a difficulty in over-expression of the catalytically

competent enzyme in the E. coli system.13,14) Though the

complementation of E. coli dxs disruptant with a putative DXS

ORF is a facile test to confirm the function, this strategy does

not enjoy wide use compared to dxr disruptant.15,16) Recently, a

putative ORF of DXS1 from ginkgo (GbDXS1) was reported

(Genbank accession number, AY505128). The present study

was aimed to construct an E. coli dxs disruptant and identify

the function of this ORF.

Materials and Methods

Construction of the disruptant. To construct an E.coli dxs

disruptant, insertional knock-out strategy was employed by

inserting a kanamycin-resistant gene aphII inside the E.coli

dxs gene (Fig. 2). A 3-kb long fragment named gdxs, which

had additional nucleotides (5'-direction, 568 nts; 3'-direction,

569 nts) at both sides of E.coli dxs, was amplified from E.coli

W3110 chromosomal DNA through PCR with gDXS-F/

gDXS-B primer pair (gDXS-F: 5'-ATCCCAGCGATGAATT

TGCAG-3', gDXS-B: 5'-GCTGGCGTTCTCGATTTTAAG-

3'). It was cloned into pT7Blue vector (Novagene, USA) to

construct gdxs-pT7, which was then digested with NruI and

dephosphorylated by alkaline phosphatase (Takara, Japan). A

1.3-kb aphII fragment, cloned to pUC19 from Tn5, was

isolated by HindIII and SmaI treatments, and blunted with T4

DNA polymerase (Qiagen, Japan).17) The fragment was
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ligated to NruI-digested gdxs-pT7 plasmid, resulting in gdxs-

aphII-pT7. The 4.3-kb gdxs-aphII fragment was isolated by

BamHI and NdeI digestions, and transformed into E. coli

FS1576, an recD mutant.18) A transformant, which grew on

LB plates containing kanamycin and 0.01% DX or ME,19,20)

but not on LB medium supplemented only with kanamycin,

was selected and designated as DXM3.

Cloning of Ginkgo biloba DXS1 and complementation.

The ORF was amplified from the embryonic root cDNA and

cloned to pMW118 (Nippon Gene, Japan) to obtain GbDXS1-

pMW plasmid. DXM3 was transformed with Gbdxs1-pMW,
and the resulting transformants were incubated at 37oC on LB

plate containing kanamycin.

Results and Discussion

The transformant DXM3 grew on LB plates containing

kanamycin and DX or ME but not on kanamycin LB medium.

Utilization of DX or ME by E. coli for the production of

MEP20) thus confirmed the auxotrophic requirement of DXM3

for MEP. The wild-type strain FS1576 could grow on the plate

without DX or ME as expected (Fig. 3). The correct homologous

recombination in the expected site was confirmed by

sequencing. To this end, a 4.3-kb DNA fragment was

amplified from DXM3 genomic DNA using gDXS-F/gDXS-

B primer pair, cloned to pGEM-T easy (Promega, USA), and

sequenced. Upon the performance of PCR using the primer

pair of T7 and M4 (T7, 5'-AATACGACTCACTATAG-3';

M4, 5'-GTTTTCCCAGTCACGACGT-3') to exclude the

chance presence of gdxs-aphII-pT7 in DXM3, amplification

of products were not found (data not shown), which is an

indication that homologous recombination indeed occurred on

the DXM3 chromosome.

With the dxs disruptant DXM3 at hand, we set to

Fig. 1. MEP pathway. 1, Pyruvate; 2, glyceraldehyde 3-phosphate; 3, DXP; 4, MEP; 5, 4-(cytidine 5'-diphospho)-2-C-methyl-D-eryth-
ritol; 6, 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol; 7, MECDP; 8, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate,
HMBPP.

Fig. 2. A construction strategy of the E. coli dxs disruptant. Homologous recombination occurred between the gdxs region and

gdxs-aphII fragment.
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functionally identify ORF of the putative GbDXS1. The

putative GbDXS1 could rescue the disruptant in the absence of

DX or ME supplementation (Fig. 3), which confirmed the

identity of ORF as DXS1. The disruptant would be useful in

screening of putative DXS ORFs, particularly when the over-

expression of DXS or enzymic assay is difficult.
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