• Title/Summary/Keyword: Gene Fishing

Search Result 39, Processing Time 0.02 seconds

Cloning and Identification of Differentially Expressed Genes Induced by Fungal Infection from Silkworm, Bombyx mori (누에에서 곰팡이(Aspergillus niger) 감염에 의해 유도 발현되는 유전자의 클로닝과 동정)

  • Lee, Jin-Sung;Hong, Su-Young;Lee, Ki-Hwa
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.929-933
    • /
    • 2010
  • We tried to identify differentially expressed genes (DEGs) from a silkworm, Bombyx mori, involved in fungal (Aspergillus niger) infection. A total RNA purified from fungal-induced and normal B. mori ($5^{th}$ instar larvae) was used for the cDNA synthesis. Differentially expressed genes were screened by annealing control primer (ACP)-based PCR technique. Comparing the gene expression profiles between fungal infection and control silkworm, we detected 10 genes that were differentially expressed in fungal induction and performed molecular cloning and nucleotide sequencing of the 10 genes. We confirmed the expression patterns of 3 DEGs by RT-PCR. The 3 DEGs over-expressed in fungal infection were identified as lysozyme, enbocin and an unknown gene. They were first identified to be genes induced by fungal infection. Although the detailed functions of 3 genes and their products remain to be determined, the genes will provide insight into the molecular mechanisms of insect-immune systems induced by fungal infection.

A Newly Recorded Basket Star of Genus Gorgonocephalus (Ophiuroidea: Euryalida: Gorgonocephalidae) from Korea

  • Kim, Donghwan;Shin, Sook
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.2
    • /
    • pp.205-208
    • /
    • 2015
  • Some euryalid specimens were collected with fishing nets from Mipo, Gyungsangnamdo and Aewol, Jejudo Island, Korea. They were identified as Gorgonocephalus eucnemis (${M\ddot{u}ller}$ & Troschel, 1842), belonging to family Gorgonocephalidae of order Euryalida, which was new to the Korean fauna. Their molecular analyses were done with newly intended COI primers of mitochondrial cytochrome oxidase I (COI) gene for the accurate molecular identification. The Korean G. eucnemis was coincident with this NCBI species as a result of Blast analysis, which showed the 99% similarity. In the current study, three Gorgonocephalus species have been reported from Korea.

Heat Shock Protein 90 Gene Expression in Juvenile Sea Cucumber Apostichopus japonicus (Echinodermata; Holothuroidea) according to Releasing Methods (어린 돌기해삼 Apostichopus japonicus (Echinodermata; Holothuroidea) 방류 방법에 따른 열충격단백질90 유전자의 발현 분석)

  • Lee, Dong-Han;Lee, Seungheon;Jeong, Dong-Bin;Sohn, Young Chang
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • Sea cucumber, Aposticopus japonicus, is a major invertebrate species in the coastal regions of Korea. To evaluate the short-term stress levels according to the releasing methods, this study investigated the gene expression profiles of heat shock protein 90 (HSP90) by real-time quantitative polymerase chain reaction. When the juvenile sea cucumbers were packed in the vinyl bag with oxygen followed by transportation for 30 min or air-exposed for 1 h, the HSP90 gene expression levels in the experimental groups were significantly increased compared to those of the control groups (transported group, p=0.001; air-exposed group, p=0.032). The experimental group at 6 h post-release by seed-spreading method and at 2~6 h post-release by underwater hose-releasing method on board a fishing boat showed that the levels of HSP90 gene expression were not statistically significant but decreased slightly compared to the control group (seed-spreading group, p=0.069; hose-releasing group, p=0.093). On the other hand, the HSP90 gene expression showed an increasing pattern as the time passed (~6 h) after underwater release of juvenile sea cucumbers by divers (p=0.061). These results suggest that HSP90 gene expression can be used to investigate short-term stress response and effective releasing methods of juvenile sea cucumbers.

Directions to Fisheries Education for Achieving UN Sustainable Development Goals (SDGs) (유엔 지속가능발전 목표(SDG)를 위한 수산교육 방향)

  • KANG, Beodeul;ZHANG, Chang Ik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.453-465
    • /
    • 2017
  • UN adopted the 2030 Agenda for Sustainable Development and the Sustainable Development Goals (SDGs) in 2015, a set of 17 objectives with 169 targets expected to guide actions over the next 15 years (2016-2030). One goal expressly focuses on the oceans, that is, SDG 14 'Conserve and sustainably use the oceans, seas and marine resources for sustainable development'. More than 30% of fish stocks worldwide were classified by FAO(2016) as overfished. Globally, world capture fisheries are near the ocean's productive capacity with catches on the order of 80 million metric tons. Aquaculture production is increasing rapidly and is expected to continue to increase, but aquaculture encounters some environmental challenges, including potential pollution, competition with wild fishery resources, potential contamination of gene pools, disease problems, and loss of habitat. Accordingly, there have been a variety of world organization and conferences stressing the importance of the implementation of the ecosystem-based fisheries management(EBFM) to overcome these problems. Annual catch of Korean fisheries have shown continuously declining patterns since late 1990s. Most fish stocks are currently known to be over-exploited, and some stocks are depleted due to the increase in fishing intensity and over-capitalization of fishing fleets. Other reasons for the depletion are land reclamations and coastal pollution, which destroy spawning and nursery grounds along the coastal regions. Aquaculture production is also increasing rapidly in Korea. However, several important issues such as gene pool and interaction with capture fisheries should be considered. The EBFM approach should use the best available information coupled with a reasonable application of the precautionary approach. The EBFM has global relevance, and so the real challenge will be to develop and use reliable, robust and cost-effective means of assessing and monitoring the status of ecosystems and their resources, and rapid means of detecting any undesirable and excessive impacts that threaten sustainable use. Future fisheries education should take into account UN's SDGs, which were adopted to achieve the global 2030 agenda. However, there are some difficulties in the current fisheries education system in Korea. First, the current education organizations are limited within the old frame of traditional fisheries sciences. Second, the fisheries education is currently lack of the future-oriented education system and of customized schools or departments. Third, the on-going fisheries education has been based upon few educational policies which are sufficiently relevant to holistic SDGs of the global standard. Accordingly, directions to modern fisheries education for achieving SDGs would be, first, the transition of fisheries education structure into the future-oriented and customized education system. Second, fisheries education needs to shift to the new paradigm, which combines traditional fisheries science education with related fields such as oceanography and environmental sciences to adopt the concept of EBFM. Lastly, fisheries education should accompany relevant policies for effectively achieving SDGs.

An Annealing Control Primer (ACP) System Used for the Isolation and Identification of Copper-Induced Genes in Alfalfa Leaves

  • Lee, Ki-Won;Lee, Sang-Hoon;Kim, Ki-Yong;Ji, Hee Chung;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Rahman, Md. Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.237-242
    • /
    • 2016
  • Copper (Cu) is a necessary microelement for plants. However, high concentrations of Cu are toxic to plants that change the regulation of several stress-induced proteins. In this study, an annealing control primer (ACP) based approach was used to identify differentially expressed Cu-induced genes in alfalfa leaves. Two-week-old alfalfa plants (Medicago sativa L.) were exposed to Cu for 6 h. Total RNAs were isolated from treated and control leaves followed by ACP-based PCR technique. Using GeneFishing ACPs, we obtained several genes those expression levels were induced by Cu. Finally, we identified several genes including UDP-glucuronic acid decarboxylase, transmembrane protein, small heat shock protein, C-type cytochrome biogenesis protein, mitochondrial 2-oxoglutarate, and trans-2,3-enoyl-CoA reductase in alfalfa leaves. These identified genes have putative functions in cellular processes such as cell wall structural rearrangements, transduction, stress tolerance, heme transport, carbon and nitrogen assimilation, and lipid biosynthesis. Response of Cu-induced genes and their identification in alfalfa would be useful for molecular breeding to improve alfalfa with tolerance to heavy metals.

Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves

  • Lee, Sang-Hoon;Rahman, Md. Atikur;Kim, Kwan-Woo;Lee, Jin-Wook;Ji, Hee Chung;Choi, Gi Jun;Song, Yowook;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.190-195
    • /
    • 2018
  • Cold, salt and heat are the most critical factors that restrict full genetic potential, growth and development of crops globally. However, clarification of genes expression and regulation is a fundamental approach to understanding the adaptive response of plants under unfavorable environments. In this study, we applied an annealing control primer (ACP) based on the GeneFishing approach to identify differentially expressed genes (DEGs) in Italian ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold ($4^{\circ}C$), salt (NaCl 200 mM) and heat ($42^{\circ}C$) treatments for six hours. A total 8 differentially expressed genes were isolated from ryegrass leaves. These genes were sequenced then identified and validated using the National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, Lolium multiflorum plastid, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. However, this study provides new insight regarding molecular information about several genes in response to multiple abiotic stresses. Additionally, these genes may be useful for enhancement of abiotic stress tolerance in fodder crops as well a crop improvement under unfavorable environmental conditions.

Effects of Salt and Drought Stresses on Seed Germination and Gene Expression Pattern in Tall Fescue (염과 건조 스트레스 조건에서 톨 페스큐의 종자 발아율과 유전자 발현 변화분석)

  • Lee, Sang-Hoon;Lee, Ki-Won;Choi, Gi Jun;Kim, Ki-Yong;Ji, Hee Jung;Hwang, Tae Young;Lee, Dong-Gi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2014
  • Salinity and drought stresses are probably the most significant abiotic factor limiting plant's growth, also negatively affect seed germination and early seedling development. To study on effect of NaCl and PEG stress on seed germination and gene expression pattern of tall fescue, the levels of NaCl and PEG-induced water stresses were determined in first experiment. Different concentration of NaCl (0 to 350 mM) and PEG (0 to 30%) were used for seed treatment. Seed Germination percentage reduced with increasing osmotic potential of growth medium either due to NaCl or PEG. Seeds were not germinate at 350 mM NaCl or 30% PEG treatment. On the basis of the results, Kentucky31(E-) had more resistant than Fawn in both stress conditions. Furthermore, we have used an annealing control primer-based differential display reverse transcription-polymerase chain reaction method to identify salt- and drought stress-induced differentially expressed genes (DEGs) in tall fescue leaves. Using 120 annealing control primers, a total of 4 genes were identified and sequenced. The possible roles of the identified DEGs are discussed in the context of their putative role during salinity and drought stresses.

Human Immunodeficiency Virus-l Tat Positively Regulates the Human CD99 Gene via DNA Demethylation (Human Immunodeficiency Virus-1 Tat 단백에 의한 인간 CD99유전자의 조절기전에 대한 연구)

  • Lee, Eu-Gene;Kim, Ye-Ri;Lee, Mi-Kyung;Lee, Im-Soon
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.277-281
    • /
    • 2008
  • HIV affects many organ systems. Patients with HIV infection have substantially increased risk of developing various cancers, primarily by opportunistic infection with oncogenic viruses due to their immunocompromised status. However, extensive evidence also indicates that the viral protein, Tat itself, may playas a major factor in the development of AIDS-related neoplasms. The molecular mechanism underlying Tat's oncogenic activity may include deregulation of cellular genes. Therefore, in this study, we examined the effect of HIV-l Tat on CD99 as one of the target cellular genes, which is a well-known tumor marker in several cancers. By using established HeLa clones that are stably expressing Tat, we found that CD99 is upregulated by endogenous Tat, whereas STAT3 is down regulated. Upon the screening of genes differentially expressed between Tat-stable cells and the control cells by using the gene fishing technique, DEG, we detected 3 genes which expression is affected by the presence of Tat. Furthermore, the methylation specific PCR analysis of the stably Tat expressing cell lines revealed that the CD99 promoter is de methylated in the presence of Tat. Taken together, these results open a potential role of CD99 in AIDS-related oncogenesis via epigenetic regulation by HIV-1 Tat.

Identifying Genes Related with Self-thinning Characteristics in Apple by Differential Display PCR (Differential Display PCR을 이용한 사과 자가적과성 연관 유전자 탐색)

  • Kim, Se Hee;Heo, Seong;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.565-573
    • /
    • 2010
  • Thinning of apple fruitlets is one of the most laborious and important works for the improvement of fruit quality and for the promotion of sufficient flower bud formation to prevent alternate bearing in commercial cultivars. Lateral fruits of self-thinning apple cultivars fall naturally within 30 days after full bloom and only central fruit remains to mature. Differences of gene expression between central fruit and lateral fruit were investigated by differential display (DD) PCR. Partial cDNAs of 30 clones from the central fruit and 24 clones from the lateral fruit were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, senescence, temperature stress, protein degradation, fruit browning, sorbitol metabolism were significantly higher in pedicels of lateral fruit than in pedicels of central fruit. On the other hand, the up-regulation of proteins involved in anthocyanin and flavanol biosynthesis and ethylene synthesis were observed in pedicels of central fruit. In Real time PCR analysis, cytochrome P450 gene was confirmed as showing a higher expression level in lateral fruit than in central fruit. The results of this study indicate that differentially expressed genes are related to self-thinning characteristics in apple tree.

Endoscopic Retrieval of Esophageal Fishhooks Using Cerclage Wire: A Case Report (내시경과 Cerclage Wire를 이용한 식도내 낚시바늘 제거: 증례보고)

  • Kim, Young-Ki;Uhm, Mi-Young;Seo, Eu-Gene;Ha, Mi-Hyun;Wang, Ji-Hwan;Jeong, In-Jo;Chang, Hong-Hee;Lee, Hee-Chun;Cho, Kyu-Woan;Lee, Hyo-Jong;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.622-626
    • /
    • 2007
  • A 1.6-year-old, intact male beagle dog was presented with three day history of odynophagia and anorexia. According to the history and radiographic findings, the patient was diagnosed with esophageal and gastric foreign body due to ingesting fishhooks. Gastroesophagoscopy revealed that one fishhook located in the thoracic esophagus cranial to the heart base and the other located in the cardia region were connected with a single fishing line. Gastrotomy was performed to remove the fishhook in the cardia region and to sever the connecting fishing line. After gastrotomy, endoscopic attempts to remove the esophageal fishhook with a three, five pronged endoscopic grasping forceps, and a biopsy were unsuccessful because the fishhook was embedded deeply in the mucosa membrane. A handmade cerclage wire(16G) shaped like a snare forceps was advanced into the esophagus while visualizing the fishhook endoscopically. The cerclage wire was used to hang and retract the foreign body. The fishhook was retracted orally, resulting in successful removal. Ten days after the operation, the patient fully recovered and was discharged.