Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.6.929

Cloning and Identification of Differentially Expressed Genes Induced by Fungal Infection from Silkworm, Bombyx mori  

Lee, Jin-Sung (Research Institute of Nareabio Tech Inc.)
Hong, Su-Young (Research Institute of Nareabio Tech Inc.)
Lee, Ki-Hwa (Department of Alternative Medicine, Kyonggi Univ.)
Publication Information
Journal of Life Science / v.20, no.6, 2010 , pp. 929-933 More about this Journal
Abstract
We tried to identify differentially expressed genes (DEGs) from a silkworm, Bombyx mori, involved in fungal (Aspergillus niger) infection. A total RNA purified from fungal-induced and normal B. mori ($5^{th}$ instar larvae) was used for the cDNA synthesis. Differentially expressed genes were screened by annealing control primer (ACP)-based PCR technique. Comparing the gene expression profiles between fungal infection and control silkworm, we detected 10 genes that were differentially expressed in fungal induction and performed molecular cloning and nucleotide sequencing of the 10 genes. We confirmed the expression patterns of 3 DEGs by RT-PCR. The 3 DEGs over-expressed in fungal infection were identified as lysozyme, enbocin and an unknown gene. They were first identified to be genes induced by fungal infection. Although the detailed functions of 3 genes and their products remain to be determined, the genes will provide insight into the molecular mechanisms of insect-immune systems induced by fungal infection.
Keywords
Silkworm; fungal infection; Aspergillus niger; DEG; RT-PCR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kaneko, Y., S. Furukawa, H. Tanaka, and M. Yamakawa. 2007. Expression of antimicrobial peptide genes encoding enbocin and gloverin isoforms in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 71, 2233-2241.   DOI
2 Kim S. H., B. S. Park, E. Y. Yun, Y. H. Je, S. D. Woo, S. W. Kang, K. Y. Kim, and S. K. Kang. 1998. Cloning and expression of a novel gene encoding a new antibacterial peptide from silkworm, Bombyx mori. BBRC. 246, 388-392.
3 Mulnix, A. B. and P. E. Dunn. 1994. Structure and induction of a lysozyme gene from the tobacco hornworm, Manduca sexta. Insect Biochem. Mole. Biol. 24, 271-281.   DOI
4 Qu, X. M., H. L. Tang, and S. Hakan. 1989. The effect of cecropins B and D from the Chinese oak silkmoth(Antheraea pernyi) on liposomes. Biophys. Biochem. Acta. 21, 35-42.
5 Schmidt, O., I. Faye, I. Lindstrom-Dinnetz, and S. C. Sun. 1993. Specific immune recognition of insect hemoline. Develop. and Compara. Immunol. 17, 195-200.   DOI
6 Shalon, D. 1998. Gene expression microarrays: a new tool or genomic research. Pathol. Biol. 243, 107-109.
7 Yoon, S. J., H. M. Chung, and K. Y. Cha. 2005. Identification of differentially expressed gene expression in germinal vesicle vs metaphase II mouse oocytes by using annealing control primers. Fertility and Sterility 83, 1293-1296.   DOI
8 Yum, S. S., S. O. Woo, and E. S. Choi. 2005. Analysis of gene expression in benzopyrene-exposed Sebastes schlegeli using differential display polymerase chain reaction. Journal of Environmental Toxicology 20, 67-73.   과학기술학회마을
9 Cociancich, S., A. Ghazi, C. Hetru, J. A. Hoffmann, and L. Leteliers. 1993. Insect defensin, an inducible antibacterial peptide forms voltage-dependent channels in Microccus luteus. J. Bio. Chem. 268, 19239-19245.
10 Cociancich, S., M. Goyffon, F. Bontms, P. Bulet, F. Bouet, A. Menez, and J. Hoffman. 1993. Purification and characterization of a scorpion defensin, a 4 kDa antibacterial peptide presenting structural similarities with insect defencin and scorpion toxins. Biophy. Biochem. Res. Commun. 194, 17-22.   DOI
11 Cui, X. S., M. R. Shin, K. A. Lee, and N. H. Kim. 2005. Identification of differentially expressed genes in murine embryos at the blastcyst stage using annealing control primer system. Molecular Reproduction and development 70, 278-287.   DOI
12 Dimarcq, J. L., E. Keppi, B. Dunbar, J. Lambert, J. M. Reichhart, D. Hoffman, S. M. Rankine, J. E. Fothergil, and J. A. Hoffman. 1988. Purification and characterization of a family of novel inducible antibacterial proteins from immunized level of the dipteran Phormia terranovae and complete amino acid sequence of the predominant member, Diptericin A. Eur. J. Biochem. 171, 17-22.   DOI
13 Haltmark, D., A. Engstrom, K. Anderson, H. Steiner, H. Bennich, and H. G. Bomam. 1983. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 2, 571-576.
14 Hara, S., and M. Yamakawa. 1995. Moricin, a novel antibacterial peptide, isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 29923-29927.   DOI
15 Hoffman, J. A., F. C. Kafatos, and C. A. Janeway. 1999. Phylogenetic perspectives in innate immunity. Science 284, 1313-1318.   DOI   ScienceOn
16 Hwang, I. T., Y. J. Kim, S. H. Kwak, Y. Y. Gu, and J. Y. Chun. 2003. Annealing control primer system for improving specificity of PCR amplification. Biotechniques 35, 1180-1184.
17 Jolles, P. and J. Jolles. 1984. What’s new in lysozme research? Always a model system. Mole. Cell Biochem. 63, 165-189.
18 Bradbury, A. F. and D. G. Smyth. 1991. Peptide amidation. Tips Biochem. Sci. 16, 112-115.   DOI
19 Alcouloumre, M. S., M. A. Ghannoum, A. S. Ibrahim, M. E. Sested, and J. E. Edwards. 1993. Fungicidal properties of defensin NP-1 and activity against Cryotococcus neoformans in vitro. Antimicrobial Agents and Chemotherapy 37, 2628-2632.   DOI   ScienceOn
20 Boman, H. G., I. Faye, G. H. Gudmundsson, J. Y. Lee, and D. A. Lidholm. 1991. Cell free immunity in cecropia : A model system for antibacterial proteins. Eur. J. Biochem. 201, 23-31.   DOI
21 Brehelin, M. and N. Boemare. 1988. Immune recognition in insects: conflicting effect of autologous plasma and serum. J. Compara. Physiol. Biochem. System. Environ. Physiol. 157, 759-764.   DOI
22 Casteels, P., C. Ampe, L. Riviere, J. V. Damme, C. Elicone, M. Fleming, F. Jacops, and F. Tempst. 1990. Isolation and Characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellipera). Eur. J. Biochem. 187, 381-386.   DOI