• 제목/요약/키워드: Gear system

검색결과 1,182건 처리시간 0.024초

산업용 인벌류트 치차 설계를 위한 자동화 기술에 관한 연구 (A Study on Automatic Technology for a industrial Industrial Involute Gears Design)

  • 조성철;변문현
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.39-46
    • /
    • 1997
  • This study describes a computer aided design system on involute gear for power transmition. Input data for gear design are pressure angle $20^{\circ}$, transmitted power, gear volume, gear ratio, addendum ratio of rack, dedendum ratio of rack, edge radius of rack, allowable contact stress and allowable bending stress etc. Bending strength contact strength and scoring are considered as the design constraints. Method of optimization developed this study. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth.

  • PDF

복합유성기어의 강도 및 내구성 해석 (Strength and Durability Analysis of the Double Planetary Gears)

  • 한성길;신유인;윤찬헌;송철기
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.28-34
    • /
    • 2014
  • A planetary gear train is more compact and endures greater amounts of transmission power compared to other gear systems. Although planetary gear systems operate in small volumes, they are capable of very high efficiency due to the compact combination of their gears in the planetary gear system. They also have outstanding efficiency of only 3% for power transmission, tantamount to the power loss that occurs in each of the shift stages. Given these advantages, planetary gear systems are used in the driving systems of, which are widely used in automobile transmissions, machine tools, semiconductor equipment, and in other areas in industrial fields. Current structural equipment requires higher efficiency and greater torque levels. According to these needs, we have designed a complex planetary gear system which creates higher levels of torque. In this paper, an evaluation of strength designs for the proposed planetary gear system was conducted to ensure the stability of the gear. In addition, a durability analysis based on Miner's rule was performed using RS B 0095 device.

연승어업을 위한 어구 유형 설정 시스템의 설계 및 구현 (Design and Implementation of Fishing Gear Type Setting System for Long Line)

  • 이태오;윤희철;임재홍
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.111-116
    • /
    • 2004
  • 어구는 어획을 효과적으로 달성하기 위해서 사용되는 도구이다. 연승어업은 모릿줄에 일정한 간격으로 아릿줄을 연결하고 아릿줄 끝에 낚시 1개씩을 매달은 어업 방법이다. 본 논문은 연승어업의 어구 투승을 효율적으로 관리할 수 있는 어구 유형 설정 시스템의 설계 및 구현에 대해서 논한다. 본 논문에서는 이를 위하여 전체적인 어구 유형 설정 시스템을 설계하고, 시스템 사용자 및 통신환경 설정, 어구 유형 설계, 어구 투승의 모형 모듈을 구현하였다. 본 논문의 타당성 검토를 위하여 어구 유형 설계 및 투승 과정을 실험하였다.

  • PDF

Output performance enhanced triboelectric nanogenerator with gear train support

  • Kim, Wook;Hwang, Hee Jae;Choi, Dukhyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.415.2-415.2
    • /
    • 2016
  • Triboelectric nanogenerator (TENG) is one of ways to convert mechanical energy sound, waves, wind, vibrations, and human motions to available electrical energy. The principal mechanism to generate electrical energy is based on contact electrification on material surface and electrostatic induction between electrodes. The performance of TENG are dependent on amount of the input mechanical energy and characteristics of triboelectric materials. Furthermore, the whole TENG system including mechanical structure and electrical system can effect on output performance of TENG. In this work, we investigated the effect of gear train on output performance and power conversion efficiency (PCE) of TENG under a given input energy. We applied the gear train on mechanical structure to improve the contact rate. We measured the output energy under a constant input energy by controlling the size of the working gear. We prepared gears with gear ratios (rin/rw) of 1, 1.7, and 5. Under the constant input energy, the voltage and current from our gear-based TENG system were enhanced up to the maximum of 3.6 times and 4.4 times, respectively. Also, the PCE was increased up to 7 times at input frequency of 1.5 Hz. In order to understand the effect of kinematic design on TENG system, we performed a capacitor experiment with rectification circuit that provide DC voltage and current. Under the input frequency of 4.5 Hz, we obtained a 3 times enhanced rectifying voltage at a gear ratio of 5. The measured capacitor voltage was enhanced up to about 8 fold in using our TENG system. It is attributed that our gear-based TENG system could improve simultaneously the magnitude as well as the generation time of output power, finally enhancing output energy. Therefore, our gear-based TENG system provided an effective way to enhance the PCE of TENGs operating at a given input energy.

  • PDF

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

증속 기어 전동 로터-베어링 시스템의 횡-비틀림 연성 유한요소 로터다이나믹 해석 (A Coupled Lateral and Torsional FE Rotordynamic Analysis of Speed Increasing Geared Rotor-Bearing System)

  • 이안성;하진웅;최동훈
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.82-88
    • /
    • 2001
  • In a transmission or geared rotor system a coupled phenomenon of lateral and torsional vibrations may occur due to the gear meshing effect. Particularly, in high speed or low vibration and low noise applications of geared rotor systems a coupled rotordynamic analysis is required to precisely predict their dynamic characteristics. In this paper a generalized finite element model of a gear pair element is developed, which actively couples the lateral and torsional vibrations due to the gear meshing effect. In the modeling the generalized forces due to the transmission error. geometrical eccentricities. and unbalances in the gear system are also considered. Then. using the developed gear pair element model a coupled unforced rotordynamic analysis is performed with a prototype 800 RT turbo-chiller rotor-bearing system having a hull-pinion speed increasing gear. Results show that the torsional vibration characteristics experience some changes due to the gear meshing and lateral dynamic coupling effect, but that they have no adverse effect and the lateral ones have no practical changes in an operating speed range.

  • PDF

Effects of a One-Way Clutch on the Nonlinear Dynamic Behavior of Spur Gear Pairs under Periodic Excitation

  • Cheon Gill-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.941-949
    • /
    • 2006
  • Nonlinear behavior analysis was used to verify whether a one-way clutch is effective for reducing the torsional vibration of a paired spur gear system under periodic excitation. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch. The one-way clutch also eliminated unsteady continuous jump phenomena over multiple solution bands, and prevented double-side contact, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of external periodic excitation and various parameter changes than a conventional gear system without a one-way clutch.

전달오차와 백래쉬를 고려한 기어구동계의 비선형 진동 (Non-linear Vibration of Gear Pair System with transmission error and Backlash)

  • 조윤수;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.73-78
    • /
    • 2001
  • Main sources of the vibration of a gear-pair system are backlash and transmission error. This paper investigates the dynamics of a gear-pair system involving backlash and transmission error. This paper presented 4 types of gear motions due to the existence of a backlash. The solutions are calculated using a multiple-time scale method and numerically. The results shows the existence of 4 type motions, jump phenomenon, and chaotic motion consequently the design of gear driving system with low vibration and noise requires the study on the effects of transmission error and backlash, i.e. nonlinearities in gear driving system.

  • PDF

A Design Method of Gear Trains Using a Genetic Algorithm

  • Chong, Tae-Hyong;Lee, Joung sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.62-70
    • /
    • 2000
  • The design of gear train is a kind of mixed problems which have to determine various types of design variables; i,e., continuous, discrete, and integer variables. Therefore, the most common practice of optimum design using the derivative of objective function has difficulty in solving those kinds of problems and the optimum solution also depends on initial guess because there are many sophisticated constrains. In this study, the Genetic Algorithm is introduced for the optimum design of gear trains to solve such problems and we propose a genetic algorithm based gear design system. This system is applied for the geometrical volume(size) minimization problem of the two-stage gear train and the simple planetary gear train to show that genetic algorithm is better than the conventional algorithm solving the problems that have continuous, discrete, and integer variables. In this system, each design factor such as strength, durability, interference, contact ratio, etc. is considered on the basis of AGMA standards to satisfy the required design specification and the performance with minimizing the geometrical volume(size) of gear trains

  • PDF

비젼을 이용한 기어 형상 측정 시스템 개발 (Gear Inspection System using Vision System)

  • 이일환;박희재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.190-195
    • /
    • 1997
  • Abstract: In this paper,an autoematic gear inspection system has been been developed using the computer aided vision system. Image processing and data analysis algorithms for gear inspection have been investigated and shown to perform quickly with high accuracy. As a result,dimensions of a gear can be measured upto few micrometer size in real time. In addition, the system can be applied to a practical manufacturing process even under nosiy conditions.

  • PDF