• Title/Summary/Keyword: Gear Backlash

Search Result 79, Processing Time 0.03 seconds

Development of Gear Stiffness Module for Multi-Body Dynamic Analysis on Gears (다물체 동역학 해석을 위한 기어 강성 모듈 개발)

  • Song, Jin-Seop;Lee, Geun-Ho;Park, Young-Jun;Bae, Dae-Sung;Lee, Chul-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.130-136
    • /
    • 2012
  • Dynamic as well as static and geometric design parameters such as inertia, tooth profile, backlash and clearance can be directly considered via multi-body dynamic analysis along with contact analysis. However, it is time consuming to use finite elements for the consideration of the tooth flexibility in the multi-body dynamic analysis of gears. A computationally efficient procedure, so called, Gear Stiffness Module, is suggested to resolve this calculation time issue. The characteristics of gear tooth compliance are discussed and rotational stiffness element concept for the Gear Stiffness Module is presented. Transmission error analyses for a spur gear system are carried out to validate the reliability and efficiency of the module. Compared with the finite element model, the Gear Stiffness Module yields considerably similar results and takes only 3% of calculation time.

Effects of Design Parameters on Rattle Noise in a Direct Engine-PTO Driveline of Tractors (엔진 직결식 PTO 전동 라인의 주요 설계 변수가 PTO 변속부의 치타음에 미치는 영향)

  • Park Y.J.;Kim K.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.323-333
    • /
    • 2006
  • Introduction of a direct engine-PTO driveline to agricultural tractors has reduced production cost and increased transmission efficiency of the PTO driveline. However, this type of PTO driveline has caused a severe rattle noise in the PTO gearbox under idle conditions. This study was conducted to investigate the causes of the rattle noise and the effects of driveline parameters on it. A mathematical model was developed for a direct engine-PTO driveline. The model was proved experimentally to be accurate enough to simulate the dynamic characteristics of the PTO driveline motions. The simulation study showed that the rattle noise was caused by collisions between the driving and driven gears in the PTO gearbox due to velocity variation of the gears, which was induced by torque fluctuations from the engine. It was also found that the rattle noise decreased with the drag torque and mass moment of inertia of the engine flywheel. Smaller mass moment of inertia of the driven gears and backlash also reduced the rattle noise. However, increasing the drag torque and mass moment of the engine flywheel or decreasing the backlash and mass moment of inertia of the driven gears were limited practically by their detrimental effects on transmission efficiency, gear strength and smooth meshing of the gears.

Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors (Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.

SWM Utilized Cable Drive System (SWM을 이용한 케이블 드라이브 시스템)

  • Lee, Bum-Joo;Kim, Kab Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.272-276
    • /
    • 2014
  • In this paper, cable drive mechanism is proposed to implement high reduction gear ratio. Cable drive mechanism has great advantages such as light weight, high degree of freedom about design aspect and zero backlashes. However, it is restrictively utilized for robotic applications because it is difficult to implement high reduction gear ratio more than 10 to 1. Proposed mechanism enables multi-level reductions by adopting seamless winding method (SWM) which links the previous output axis and the next input axis. Consequently, this reduces the mechanical complexity significantly and enables high reduction with only one single wire cable. 3D CAD design was provided and prototype was manufactured.

Modeling of EMB (Electro Mechanical Brake) to Emulate Gearbox Fault and Control (기어의 고장을 구현하기 위한 EMB(Electro Mechanical Brake) 모델링 및 제어)

  • Choe, Byung-Do;Hwang, Woo-Hyun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-38
    • /
    • 2012
  • EMB is considered as the next generation braking mechanism because it has simple structure and is environment friendly. However, as other brake mechanisms, EMB should be operated reliably for any operating conditions. EMB should be designed with fail-safe and fault-tolerant control concepts which require robust fault detection algorithms for various possible faults. In the design of fault detection algorithms, it is very difficult to construct faulty conditions in real EMB and thus, simulations are often used to emulate the faulty conditions. In this paper, a simulation tool is developed using the commercial software to emulate gear faults in the EMB mechanism. A backlash compensation algorithm is introduced based on contact point detection because screw backlash causes a delay in clamping force response time.

5-Axis CNC Machining of Roller Gear Cam (롤러 기어 캠의 5-축 CNC 가공)

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.739-745
    • /
    • 2010
  • The roller gear cam can control the rotational follower periodically by attaching several roller on the circumstance of follower shaft and it is widely used in non-backlash and precise actuating mechanism such as index table or ATC of machine tools. For machining the roller gear cam, 5 axis CNC machine tool is used and the geometric principle of CAM mechanism must be adopted to generate the NC-code and to develop the special CAD/CAM software because there is not commercial CAM system to machine the roller gear cam. The maker of the specially developed software in domestic user is generally from Japan or Taiwan. However these softwares do not reflect the post processing technique for finish machining in the module. Also, there is some limitation for further new application of itself and it needs higher costs for further application. In this study, the CAD/CAM software to overcome these problem was developed. And its reliability was verified by applying it in 5-axis CNC machining. Finally, the experimental result conducted in the 5-axis machining show good consistency in the movement of follower along the flute and in its Size.

A study on vibration characteristics caused by backlash of gear-box in escalator with chain-sprocket drive mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • Kwon, Yi-Sug;Park, Seon-Ryong;Suh, Jong-Ho;Hong, Seong-Wook;Park, No-Gil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.329.2-329
    • /
    • 2002
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash of gearbox as well as sag of driving chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. (omitted)

  • PDF

Development of Gear-Type Vane Dampers to Replace Link-Type Vane Dampers in Marine FD Fans (선박용 강제통풍 팬의 기어식 베인댐퍼 성능평가)

  • Hur, Nam-Soo;Jang, Sung-Cheol;Lee, Kyung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Thus, this study aimed to develop a gear-type vane damper in order to replace the link-type vane damper. To achieve this goal, the torque generated in a gear-type vane damper was analyzed, and a structural analysis was conducted. In addition, the fluid flow was analyzed according to the changes in the vane's angle, and experimental tests such as a dry-heat test and cold test were conducted considering the operating conditions of the vessels. Moreover, an appropriate actuator was selected for the developed gear-type vane damper, and studies on the reduction in the backlash due to the facing-pressure adjustment length and flow rate and leakage test due to the vane's angle were conducted.

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

Development of gear type grease lubricator by rapid prototyping (쾌속조형기에 의한 기어식 주유장치의 개발)

  • Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.46-53
    • /
    • 2014
  • An automatic grease lubricator provides an adequate amount of fresh grease constantly to any type of rotating machine to minimize friction heat and reduce friction loss. This study seeks to develop an automatic grease lubricator by means of rapid prototyping with a gear-driven mechanism and a controlled operation time. The ultimate design is to lubricate an adequate amount of grease by a simple dip-switch clicking mechanism according to an advanced set cycle. The backlash of the gear was minimized to increase the power, and to increase the power of the mechanism, the binding frequency and the thickness of the coil were changed. To control the rotation cycles of the main shaft according to certain set numbers, different resistances and chips were used in the design of the circuit which controls the electrical signals via a pulse. A digital mock-up was analyzed and the rapid prototyping (RP) trial products were tested with a PCB circuit and grease. An evaluation of the outlet capacity of RP trial products was conducted, as the friction caused by the outlet on the wall surface was an important factor in the operation of the equipment. Finally, a finishing process was applied to decrease the roughness of a surface to a comparable level to test the performance of the product.