• Title/Summary/Keyword: Gaussian distribution theory

Search Result 60, Processing Time 0.199 seconds

Analysis of Threshold Voltage and DIBL Characteristics for Double Gate MOSFET Based on Scaling Theory (스켈링 이론에 따른 DGMOSFET의 문턱전압 및 DIBL 특성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.145-150
    • /
    • 2013
  • This paper has presented the analysis for threshold voltage and drain induced barrier lowering among short channel effects occurred in subthreshold region for double gate(DG) MOSFET as next-generation devices, based on scaling theory. To obtain the analytical solution of Poisson's equation, Gaussian function has been used as carrier distribution to analyze closely for experimental results, and the threshold characteristics have been analyzed for device parameters such as channel thickness and doping concentration and projected range and standard projected deviation of Gaussian function. Since this potential model has been verified in the previous papers, we have used this model to analyze the threshold characteristics. As a result to apply scaling theory, we know the threshold voltage and drain induced barrier lowering are changed, and the deviation rate is changed for device parameters for DGMOSFET.

Bayesian Model Selection in Analysis of Reciprocals

  • Kang, Sang-Gil;Kim, Dal-Ho
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.85-93
    • /
    • 2005
  • Tweedie (1957a) proposed a method for the analysis of residuals from an inverse Gaussian population paralleling the analysis of variance in normal theory. He called it the analysis of reciprocals. In this paper, we propose a Bayesian model selection procedure based on the fractional Bayes factor for the analysis of reciprocals. Using the proposed model procedures, we compare with the classical tests.

  • PDF

Bayesian Model Selection in Analysis of Reciprocals

  • Kang, Sang-Gil;Kim, Dal-Ho;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1167-1176
    • /
    • 2005
  • Tweedie (1957a) proposed a method for the analysis of residuals from an inverse Gaussian population paralleling the analysis of variance in normal theory. He called it the analysis of reciprocals. In this paper, we propose a Bayesian model selection procedure based on the fractional Bayes factor for the analysis of reciprocals. Using the proposed model selection procedures, we compare with the classical tests.

  • PDF

A Copula method for modeling the intensity characteristic of geotechnical strata of roof based on small sample test data

  • Jiazeng Cao;Tao Wang;Mao Sheng;Yingying Huang;Guoqing Zhou
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.601-618
    • /
    • 2024
  • The joint probability distribution of uncertain geomechanical parameters of geotechnical strata is a crucial aspect in constructing the reliability functional function for roof structures. However, due to the limited number of on-site exploration and test data samples, it is challenging to conduct a scientifically reliable analysis of roof geotechnical strata. This study proposes a Copula method based on small sample exploration and test data to construct the intensity characteristics of roof geotechnical strata. Firstly, the theory of multidimensional copula is systematically introduced, especially the construction of four-dimensional Gaussian copula. Secondly, data from measurements of 176 groups of geomechanical parameters of roof geotechnical strata in 31 coal mines in China are collected. The goodness of fit and simulation error of the four-dimensional Gaussian Copula constructed using the Pearson method, Kendall method, and Spearman methods are analyzed. Finally, the fitting effects of positive and negative correlation coefficients under different copula functions are discussed respectively. The results demonstrate that the established multidimensional Gaussian Copula joint distribution model can scientifically represent the uncertainty of geomechanical parameters in roof geotechnical strata. It provides an important theoretical basis for the study of reliability functional functions for roof structures. Different construction methods for multidimensional Gaussian Copula yield varying simulation effects. The Kendall method exhibits the best fit in constructing correlations of geotechnical parameters. For the bivariate Copula fitting ability of uncertain parameters in roof geotechnical strata, when the correlation is strong, Gaussian Copula demonstrates the best fit, and other Copula functions also show remarkable fitting ability in the region of fixed correlation parameters. The research results can offer valuable reference for the stability analysis of roof geotechnical engineering.

Distribution Approximation of the Two Dimensional Discrete Cosine Transform Coefficients of Image (영상신호 2차원 코사인 변환계수의 분포근사화)

  • 심영석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.3
    • /
    • pp.130-134
    • /
    • 1985
  • In two-dimensional discrete cosine transform(DCT) coding, the measurements of the distributions of the transform coefficients are important because a better approximation yields a smaller mean square distorition. This paper presents the results of distribution tests which indicate that the statistics of the AC coefficients are well approximated to a generalized Gaussian distribution whose shape parameter is 0.6. Furthermore, from a simulation of the DCT coding, it was shown that the above approximation yields a higher experimental SNR and a better agreement between theory and simulation than the Gaussian or Laplacian assumptions.

  • PDF

Sound Energy Distributions according to Incident Angles on the Bounding Surfaces in the Reverberation Room (잔향실 경계면에서 입사각에 따른 음에너지 분포)

  • 강현주;이정권;김현실;김재승;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.279-285
    • /
    • 1997
  • In this paper, the validity for the application of the diffuse sound field theory to the real sound filed, especially on the bounding surfaces of the rooms, was studied. Numerical simulations using ray tracing technique for two models, namely spheres and a reverberant room, were performed. Calculation results show that the distribution of the incident sound energy vs incident angles is approximated to Gaussian distribution, not to the uniform distribution.

  • PDF

Evaluation of Consolidation Settlement by Gaussian Quadrature (가우스 적분법을 이용한 압밀침하량 산정)

  • Yune, Chan-Young;Jung, Young-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.188-194
    • /
    • 2009
  • Consolidation settlement, a crucial parameter in geotechnical design of soft ground, has not been computed in a unique way due to different computation methods in practice. To improve computational error in calculating consolidation settlement, a number of researches has been attempted. Conventional 1-dimensional consolidation theory assumes the center of the clay layer as the representative point to obtain effective stress in calculation, which could resort to erroneous results. To calculate exact solutions considering initial distribution of effective stress, diving a stratum into multi-layers could resort to wasting time and effort. In the study, a novel methodology for calculating consolidation settlement via Guassian quadrature is developed. The method generally is capable of computing settlements in any case of the stress conditions encountered in fields.

  • PDF

A Study on Prediction of Temperature Distribution in Pipe Girth Welding by Mapping Theory (사상 이론을 이용한 파이프 원주 용접의 온도 분포 예측에 관한 연구)

  • Jo, Yeong-Tae;Na, Seok-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2935-2944
    • /
    • 2000
  • Gas tungsten arc(GTA) welding is used to rrpiar the seat ring in swing type check valve in power plant because of its high weld quality. In order to automate the welding process, it is needed to analyze the process of inside pipe girth welding. In this study, the shapes of weld bead on pipe inside and outside were predicted and its validity was investigated. On the assumption that the welding arc had a bivariate gaussian distribution, analytical solution was derived to predict the temperature distribution in pipe weld using mapping under consideration of physical relationships. The size of weld bean could be predicted from this equation and its accuracy was verified by experiments.

The Influence of the Initial Spot Size of a Double Half-Gaussian Hollow Beam on Its Propagation Characteristics in a the Turbulent Atmosphere

  • Yuan, Dong;Shu-Tao, Li;Jia-Yin, Guan;Xi-He, Zhang;Guang-Yong, Jin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.541-546
    • /
    • 2016
  • In this paper, by using the Rayleigh-Sommer field theory and the cross-spectral density function, the analytical expression for the intensity distribution of a double half-Gaussian hollow beam in a turbulent atmosphere is obtained. The influence of the initial spot size of this beam on its propagation properties in a turbulent atmosphere is simulated, and the intensity distributions for such beams with different spot sizes are obtained. The results show that the initial spot size has an important influence on the propagation properties in the near field, while this influence in the far field is very weak.

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

  • Hosseini, Seyed Mahmoud;Shahabian, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.41-64
    • /
    • 2014
  • The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).