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Bayesian Model Selection in Analysis of Reciprocals 
 

Sang Gil Kang1) ⋅ Dal Ho Kim2) ⋅ Young Joon Cha3)

Abstract

Tweedie (1957a) proposed a method for the analysis of residuals from 
an inverse Gaussian population paralleling the analysis of variance in 
normal theory. He called it the analysis of reciprocals. In this paper, we 
propose a Bayesian model selection procedure based on the fractional 
Bayes factor for the analysis of reciprocals. Using the proposed model 
selection procedures, we compare with the classical tests.
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1. INTRODUCTION

Because of the versatility and flexibility in modelling right-skewed data, the 

inverse Gaussian distribution has potential useful applications in a wide variety of 

fields such as biology, economics, reliability theory, life testing and social sciences 

as discussed in Chhikara and Folks (1978, 1989) and Seshadri (1999). Tweedie 

(1957a, 1957b) established many important statistical properties of the inverse 

Gaussian distribution and discussed the similarity between statistical methods 

based on the inverse Gaussian distribution and those based on the normal theory.

Let X  be an inverse Gaussian distribution with density function   
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f(x∣μ,λ) =
λ
2π
x
- 3/2

exp {-
λ(x-μ) 2

2μ 2x
}, x > 0,             (1)

where μ > 0  and λ > 0 . The parameter μ  is the mean of the distribution and λ  is 

a scale parameter. The inverse Gaussian distribution will be denoted by the 

IG(μ,λ). In this model, we assume that there are n i  items from the ith 

population each of which is distributed as IG(μ i,λ i )  where i=1,…,k . The 

classical analysis of reciprocals (Tweedie, 1957a) consists of testing whether the 

means μ i  are all equal when all populations have the same λ . From the 

frequentist viewpoints this problem poses the difficulty that an exact F test exists 

only under the condition that the λ i's are all equal.

Our proposal here is to formulate the classical analysis of reciprocals as a model 

selection problem for which we propose a fully Bayesian procedure.

Models (or Hypotheses) H 1 , H 2 ,… , H q  are under consideration, with the data 

x = (x 1,x 2, … ,x n)  having probability density function f i( x∣ θ i)  under model 

H i,i=1,2,…,q . The parameter vectors θ i  are unknown. Let π i( θ i)  be the 

prior distribution of model Hi, and let p i  be the prior probabilities of  model Hi,

i= 1,2,…,q . Then the posterior probability that the model Hi  is true is

P(Hi∣ x )=( ∑
q

j=1

p j
p i
⋅B ji)

- 1

,                         (2)

where B ji
 is the Bayes factor of model Hj  to model Hi  defined by

B ji=
mj( x )

mi( x )
=

⌠
⌡f j( x∣ θ j)π j( θ j)d θ j

⌠
⌡f i( x∣ θ i)π i( θ i)d θ i

.                   (3)

The B ji
 interpreted as the comparative support of the data for the model j  to i. 

The computation of B ji
 needs specification of the prior distribution π i( θ i )  and 

π j( θ j). Usually, one can use the noninformative prior, often improper, such as 

uniform prior, Jeffreys prior and reference prior. Denote it as πNi . The use of 

improper priors π
N
i (⋅)  in (3) causes the B ji

 to contain unspecified constants.

Spiegalhalter and Smith (1982), O'Hagan (1995) and Berger and Pericchi (1996) 

have made efforts to compensate for that arbitrariness. Berger and Pericchi (1996) 

introduced the intrinsic Bayes factor using a data-splitting idea, which would 

eliminate the arbitrariness of improper priors. O'Hagan (1995) proposed the 



Bayesian Model Selection in Analysis of Reciprocals 1169

fractional Bayes factor. To remove the arbitrariness in Bayes factor, he used to a 

portion of the likelihood with a so-called the fraction b . These two approaches 

mentioned above have shown to be quite useful in many statistical areas.

In this paper, we consider the Bayesian model selection problem for analysis of 

reciprocals. The outline of the remaining sections is as follows. In Section 2, using 

the reference priors, we provide the Bayesian model selection procedure based on 

the fractional Bayes factor for the analysis of reciprocals, and provide the test 

procedure for homogeneity of the λ's. In Section 3, some examples and conclusions 

of our Bayesian test procedure are given.

2. BAYES FACTOR FOR ANALYSIS OF RECIPROCALS

2.1 Preliminaries

It has known that the use of improper priors πNi (⋅)  in (3) causes the B ji
 to 

contain unspecified constants. To solve this problem, O'Hagan (1995) proposed the 

fractional Bayes factor for Bayesian testing and model selection problem as follow.

When the π
N
i ( θ i )  is noninformative prior under Hi, equation (3) becomes

BNji=

⌠
⌡f j( x∣ θ j)π

N
j ( θ j)d θ j

⌠
⌡f i( x∣ θ i)π

N
i ( θ i)d θ i

.

Then the fractional Bayes factor of model Hj  versus model Hi  is

B Fji=B
N
ji⋅

⌠
⌡f

b
i ( x∣ θ i )π

N
i ( θ i )d θ i

⌠
⌡f
b
j ( x∣ θ j)π

N
j ( θ j)d θ j

=BNji⋅
mbi ( x)

mbj ( x)
,

and f i( x∣ θ i)  is the likelihood function and b  specifies a fraction of the 

likelihood which is to be used as a prior density. He proposed three ways for the 

choice of the fraction b . One frequently suggested choice is b=m/n , where m  

is the size of the minimal training sample, assuming this is well defined. (see 

O'Hagan, 1995, 1997 and the discussion by Berger and Mortera of O'Hagan, 1995).

 

2.2 Fractional Bayes Factor for Analysis of Reciprocals

Given samples of sizes n i  from IG(μ i,λ ), i=1,…,k,  we consider the 

testing of the following hypotheses:
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H 1:μ 1=…=μ k≡μ   v.s. H 2:μ 1≠…≠μ k.

Our interest is to develop a Bayesian test based on the fractional Bayes factors 

for H 1  v.s. H 2  under the noninformative priors. 

Under the hypothesis H 1 , the reference prior for μ  and λ  is

π 1(μ,λ)=λ
- 1
μ
- 3/2
.

The likelihood function under H 1  is

L(μ,λ∣ x )=(
1
2π
)
n
[ ∏
k

i= 1
∏
n i

j=1
x
- 3/2
ij ]λ

n/2
exp {-

λ
2
[ ∑
n 1

j=1
s i+

n i( x i-μ)
2

μ 2x i
] },

where n= n 1+…+n k, x i= ∑
n i

j=1
x ij/n i  and s i= ∑

n i

j=1
[ (1/x ij)-(1/x i)],i=1,…,k .

Then the element of fractional Bayes factor under H 1  is given by

       mb1( x ) =
⌠
⌡

∞

0

⌠
⌡

∞

0
Lb(μ,λ∣ x )π 1(μ,λ)dμdλ

= (
1
2π
) nb[ ∏

k

i=1
∏
n i

j=1
x - 3b/2ij ](

b
2
)
-
nb
2 Γ(

nb
2
)S 1( x ;b),

where 

S 1( x ;b)=
⌠
⌡

∞

0
θ - 1/2 { ∑

k

i=1
[s i+ n ix i(θ- x i

-1
) 2 ] }

-
nb
2 dθ.

For the H 2 , the reference prior is

π 2(μ 1 ,…,μ k,λ)=μ
- 3/2
1 …μ - 3/2k λ - 1.

Kang (2004) developed the above reference prior π 2(μ 1 ,…,μ k,λ) . The likelihood 

function under H 2  is

L(μ 1,…,μ k,λ∣ x )

= (
1
2π
)
n
[ ∏
k

i=1
∏
n i

j=1
x
- 3/2
ij ]λ

n/2
exp {- ∑

k

i= 1

λ
2
[ s i+

n i( x i-μ i)
2

μ2i x i
] }.

Thus the element of fractional Bayes factor under H 2  is given as follows.
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       mb2( x ) =
⌠
⌡

∞

0
…⌠⌡

∞

0
Lb(μ 1,…,μ k,λ∣ x )π 2(μ 1,…,μ k,λ)dμ 1…dμ kdλ

= (
1
2π
) nb[ ∏

k

i=1
∏
n i

j=1
x - 3b/2ij ](

b
2
)
-
nb
2 Γ(

nb
2
)S 2( x ;b),

where 

S 2( x ;b)=
⌠
⌡

∞

0
…⌠⌡

∞

0
[ ∏
k

i= 1
θ
- 1/2
i ] { ∑

k

i=1
[s i+ n ix i(θ i- x i

-1
)
2
] }
-
nb
2
dθ1…dθk.

Therefore the B
N
21
 from mb1( x )  and m

b
2( x )  with b= 1  is given by

BN21=
S 2( x ;1)

S 1( x ;1)
.                             

And also

m
b
1( x )

mb2( x )
=
S 1( x ;b)

S 2( x ;b)
.

Thus the fractional Bayes factor of H 2  versus H 1  is given by

BF21 =
S 2( x ;1)S 1( x ;b)

S 2( x ;b)S 1( x ;1)
.                        (4)

Note that the calculation of the fractional Bayes factor of H 2  versus H 1  requires 

a numerical integration. 

 

2.3 Fractional Bayes Factor for Homogeneity of the Scale Parameters

The Bayes factor in Section 2.2 was derived under the assumption that all the  

λ's are equal. Hence, it is of interest to test whether the same λ  condition can 

be accepted.

Given samples of sizes n i  from IG(μ i,λ i ), i=1,…,k,  we consider the 

testing of the following hypotheses:

H 1:λ 1=…=λ k≡λ   v.s. H 2:λ 1≠…≠λ k.

Under the hypothesis H 1 , the reference prior for μ 1,…,μ k  and λ  is

π 1(μ 1 ,…,μ k,λ)=λ
- 1
μ
- 3/2
1 …μ

- 3/2
k .
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The likelihood function under H 1  is

L(μ 1,…,μ k,λ∣ x )

= (
1
2π
) n[ ∏

k

i=1
∏
n i

j=1
x - 3/2ij ]λ n/2 exp {- ∑

k

i= 1

λ
2
[ s i+

n i( x i-μ i)
2

μ2i x i
] }.

where n=n 1+…+n k, x i= ∑
n i

j=1
x ij/n i  and s i= ∑

n i

j=1
[ (1/x ij)-(1/x i)], i=1,…,k . 

Then the element of fractional Bayes factor under H 1  is given by

       mb1( x ) =
⌠
⌡

∞

0
…⌠⌡

∞

0
Lb(μ 1,…,μ k,λ∣ x )π 1(μ 1,…,μ k,λ)dμ 1…dμ kdλ

= (
1
2π
) nb[ ∏

k

i=1
∏
n i

j=1
x - 3b/2ij ](

b
2
)
-
nb
2 Γ(

nb
2
)T 1( x ;b),

where 

T 1( x ;b)=
⌠
⌡

∞

0
…⌠⌡

∞

0
[ ∏
k

i=1
θ
-
1
2

i ] { ∑
k

i=1
[s i+ n ix i(θ i- x i

-1
)
2
] }
-
nb
2
dθ1…dθk.

For the H 2 , the reference prior is

π 2(μ 1 ,…,μ k,λ 1,…,λ k)=μ
- 3/2
1 …μ - 3/2k λ - 11 …λ

- 1
l .

The likelihood function under H 2  is

L(μ 1,…,μ k,λ 1,…,λ k∣ x )

= (
1
2π
)
n
[ ∏
k

i=1
∏
n i

j=1
x
- 3/2
ij ][ ∏

k

i= 1
λ
n i/2

i ] exp {- ∑
k

i=1

λ i
2
[ s i+

n i( x i-μ i)
2

μ2i x i
] }.

Thus the element of fractional Bayes factor under H 2  is given as follows.

       
m
b
2( x ) =

⌠
⌡

∞

0
…⌠⌡

∞

0
L
b
(μ 1 ,…,μ k,λ 1,…,λ k∣ x )

× π 2(μ 1,…,μ k,λ 1,…,λ k)dμ 1…dμ kdλ 1…dλ k

       = (
1
2π
) nb[ ∏

k

i=1
∏
n i

j=1
x - 3b/2ij ](

b
2
)
-
nb
2 { ∏

k

i=1
Γ[
n ib

2
] }T 2( x ;b),

where 
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T 2( x ;b)=
⌠
⌡

∞

0
…⌠⌡

∞

0
∏
k

i= 1
{θ - 1/2i [ s i+ n ix i(θ i- x i

-1
) 2 ]

-
n ib

2 }dθ1…dθk.

Therefore, the BN21  from m
b
1( x )  and m

b
2( x )  with b= 1  is given by

B
N
21=

T 2( x ;1) ∏
k

i=1
Γ[
n i
2
]

T 1( x ;1)Γ[
n
2
]
.                         

And also

m
b
1( x )

mb2( x )
=

T 1( x ;b)Γ[
nb
2
]

T 2( x ;b) ∏
k

i=1
Γ[
n ib

2
]

.

Thus the fractional Bayes factor of H 2  versus H 1  is given by

B
F
21 =

Γ[
nb
2
] ∏
k

i=1
Γ[
n i
2
]

Γ[
n
2
] ∏
k

i=1
Γ[
n ib

2
]

T 2( x ;1)T 1( x ;b)

T 2( x ;b)T 1( x ;1)
.             (5)

Note that the calculation of the fractional Bayes factor of H 2  versus H 1  requires 

a numerical integration. 

3. NUMERICAL STUDIES

In this section, we give some examples to show the usefulness of our test 

procedures by real data sets.

Example 1 : Testing equality of scale parameters

The data given in Table 1 is the results of an experiment designed to compare 

the performance of high-speed turbine bearings made out of five different 

compounds. In the experiment 10 bearings of each type were tested and the failure 

times in units of millions of cycles were recorded (McCool, 1979; Chhikara and 

Folks, 1989).

Let Vi= ∑
n i

j=1
[ (1/Xij)-(1/Xi)]  and V= ∑

k

i=1
Vi.  Under H 1:λ 1=…= λ k , the 

classical test statistic is given by
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Λ=
M
C
,

where f i=n i-1 , f= ∑
k

i=1
(n i-1) , C=1+

1
3(k-1)

[ ∑
k

i=1
(1/ f i)-(1/ ∑

k

i=1
f i)]  and 

M=f log(V/f)- ∑
k

i=1
f i log(Vi/f i).The test statisticΛ  is distributed approximately 

as χ 2  with (k-1)  degrees of freedom.

Table 1. Failure Times of Bearing Specimens

I  3.03, 5.53, 5.60, 9.30, 9.92, 12.51, 12.95, 15.21, 16.04, 16.84

II  3.19, 4.26, 4.47, 4.53, 4.67, 4.69, 5.78, 6.79, 9.37, 12.75

III  3.46, 5.22, 5.69, 6.54, 9.16, 9.40, 10.19, 10.71, 12.58, 13.41

IV  5.88, 6.74, 6.90, 6.98, 7.21, 8.14, 8.59, 9.80, 12.28, 25.46

V  6.43, 9.97, 10.39, 13.55, 14.45, 14.72, 16.81, 18.39, 20.84, 21.51

The p-values based on the χ 2  statistics, the value of fractional Bayes factors 

of H 2  versus H 1  and the posterior probabilities for H 1  are given in Table 2. 

We computed the posterior probabilities for model H 1  corresponding to values of 

Bayes factors when the prior probabilities are equal. From the results of Table 2, 

we may conclude that the homoscedastic model is clearly favoured. 

Table 2. p-values, Bayes Factor Values and Posterior Probabilities

H 1 p-value BF21 P(H 1∣x )

λ 1=λ 3=λ 4 0.7446 0.1615 0.8610

λ 1=λ 2=λ 5 0.1953 0.5386 0.6499

λ 1=λ 2=λ 3 0.8621 0.1392 0.8778

Example 2 : Testing the equality of means

The three rows in Table 2 show that the equality of the scale parameters are 

accepted. In this situation it is desired to test whether the population means are 

all equal.

The p-values under the F  statistics of the analysis of reciprocals, the value of 

fractional Bayes factors of H 2  versus H 1  and the posterior probabilities for H 1  

are given in Table 3. We computed the posterior probabilities for model H 1  

corresponding to values of Bayes factors when the prior probabilities are equal. 

From the results of Table 3, for the model H 1:μ 1=μ 3=μ4  and the model
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H 1:μ 1=μ 2=μ5 , the simpler model and the complex model are clearly favoured, 

respectively. The Bayes factors and  the p-values give the same message. But for 

the model H 1:μ 1=μ 2=μ3 , the classical test favors the complex model and the 

Bayes factor favors simpler model.

In this paper, we developed a Bayesian model selection procedures for the 

analysis of reciprocals. Under the reference priors, the fractional Bayes factors of 

O'Hagan (1996) are computed. Through the examples, we can conclude that the 

Bayes factors and  the classical tests perform reasonably. 

Table 3. p-values, Bayes Factor Values and Posterior Probabilities

H 1 p-value B
F
21 P(H 1∣x )

μ 1=μ 3=μ 4 0.6389 0.0816 0.9246

μ 1=μ2=μ 5 0.0017 25.4755 0.0378

μ 1=μ2=μ 3 0.0480 0.9831 0.5043
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