• Title/Summary/Keyword: Gaussian density

Search Result 361, Processing Time 0.028 seconds

The Performance Analysis of DS/SSMA BPSK Correlation Receivers in Electric Power Line Channel (전력선 채널에서의 DS/SSMA BPSK 코릴레이션 수신기 성능에 관한 연구)

  • Kang, Byeong-Kwon;Cho, Chang-Gil;Cho, Kwan;Lee, Jae-Kyeong;Whang, Keum-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.9
    • /
    • pp.972-981
    • /
    • 1992
  • In this paper, the performance of linear and hard-limiting correlation receivers for DS/SSMA BPSK power line communication system is analyzed. Strong impulsive noise of power line is modeled with Chan's noise model, and the performance of both receivers is analyzed in terms of parameters such as ratio of power spectrum density of impulsive noise to that background noise, ratio in impulsive noise width th that of data bit, and interarrival time of impulsive noise. And also multiple access capacity is evaluated with Gaussian approximation of multiple access interference. The results of this analysis reveal that the performance of linear correlation receiver is superior to that of hard-limiting correlation receiver when $N_1/N_b$ is small and is close to 1. But the BER and the multiple access capacity of hard-limiting correlation receiver becomes better in comparison with linear correlation receiver as $N_1/N_b$ increases.

  • PDF

Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering (Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This paper concerns Fuzzy Radial Basis Function Neural Network (FRBFNN) and automatic rule generation of extraction of the FRBFNN by means of mountain clustering. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values (degree of membership) directly rely on the computation of the relevant distance between data points. Also, we consider high-order polynomial as the consequent part of fuzzy rules which represent input-output characteristic of sup-space. The number of clusters and the centers of clusters are automatically generated by using mountain clustering method based on the density of data. The centers of cluster which are obtained by using mountain clustering are used to determine a degree of membership and weighted least square estimator (WLSE) is adopted to estimate the coefficients of the consequent polynomial of fuzzy rules. The effectiveness of the proposed model have been investigated and analyzed in detail for the representative nonlinear function.

  • PDF

Performance Analysis of M-ary UWB System using MHP Pulses in the Presence of Timing Jitter (타이밍 지터 환경에서 MHP 펄스를 이용한 M 진 초광대역 시스템의 성능분석)

  • Hwang, Jun Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.69-76
    • /
    • 2015
  • In this paper, we propose and analyze a M-ary transmission scheme in time hopping ultra-wide band(UWB) system using mutually orthogonal modified Hermite polynomial(MHP) pulses. The proposed M-ary transmission scheme employs the orthogonal property between different ordered pulses and N data bits make the M-ary signals by linear combination of M MHP pluses. The theoretical analysis and simulation results show that the proposed system has better performance and higher data rate than conventional M-ary UWB system. We derive the general form of correlation function for MHP pulses and analyze bit error rate(BER) performance over additive white Gaussian noise(AWGN) with the presence of timing jitter. We show that the proposed system has the improved BER performance and robustness to timing jitter and low power spectrum density compared with conventional M-ary UWB system.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Analysis of Achievable Data Rate under BPSK Modulation: CIS NOMA Perspective (BPSK 변조의 최대 전송률 분석: 상관 정보원의 비직교 다중 접속 관점에서)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.995-1002
    • /
    • 2020
  • This paper investigates the achievable data rate for non-orthogonal multiple access(NOMA) with correlated information sources(CIS), under the binary phase shift keying(BPSK) modulation, in contrast to most of the existing NOMA designs using continuous Gaussian input modulations. First, the closed-form expression for the achievable data rate of NOMA with CIS and BPSK is derived, for both users. Then it is shown by numerical results that for the stronger channel user, the achievable data rate of CIS reduces, compared with that of independent information sources( IIS). We also demonstrate that for the weaker channel user, the achievable data rate of CIS increases, compared with that of IIS. In addition, the intensive analyses of the probability density function(PDF) of the observation and the inter-user interferennce(IUI) are provided to verify our theoretical results.

Modified Weighted Filter by Standard Deviation in S&P Noise Environments (S&P 잡음 환경에서 표준편차를 이용한 변형된 가중치 필터)

  • Baek, Ji-Hyeon;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.474-480
    • /
    • 2020
  • With the advent of the Fourth Industrial Revolution, many new technologies are being utilized. In particular, video signals are used in various fields. However, when transmitting and receiving video signals, salt and pepper noise and additive white Gaussian noise (AWGN) occur for multiple reasons. Failure to remove such noise when performing image processing can cause problems. Generally, filters such as CWMF, MF, and AMF remove noise. However, these filters perform somewhat poorly in the high-density noise domain and cause smoothing, resulting in slightly lower retention of the edge components. In this paper, we propose an algorithm by effectively eliminating salt and pepper noise using a modified weight filter using standard deviation. In order to prove the noise reduction performance of the proposed algorithm, we compared it with the existing algorithm using PSNR and magnified images.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Safety Evaluation of Subway Tunnel Structures According to Adjacent Excavation (인접굴착공사에 따른 지하철 터널 구조물 안전성 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.559-563
    • /
    • 2024
  • Currently, in Korea, large-scale, deep excavations are being carried out adjacent to structures due to overcrowding in urban areas. for adjacent excavations in urban areas, it is very important to ensure the safety of earth retaining structures and underground structures. accordingly, an automated measurement system is being introduced to manage the safety of subway tunnel structures. however, the utilization of automated measurement system results is very low. existing evaluation techniques rely only on the maximum value of measured data, which can overestimate abnormal behavior. accordingly, in this study, a vast amount of automated measurement data was analyzed using the Gaussian probability density function, a technique that can quantitatively evaluate. highly reliable results were derived by applying probabilistic statistical analysis methods to a vast amount of data. therefore, in this study, the safety evaluation of subway tunnel structures due to adjacent excavation work was performed using a technique that can process a large amount of data.

Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models (GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byung-Ju;Lee, Moon-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • The objective of this study is to examine the climate change impact assessment on Korean water resources considering the uncertainties of Global Climate Models (GCMs) and hydrological models. The 3 different emission scenarios (A2, A1B, B1) and 13 GCMs' results are used to consider the uncertainties of the emission scenario and GCM, while PRMS, SWAT, and SLURP models are employed to consider the effects of hydrological model structures and potential evapotranspiration (PET) computation methods. The 312 ensemble results are provided to 109 mid-size sub-basins over South Korean and Gaussian kernel density functions obtained from their ensemble results are suggested with the ensemble mean and their variabilities of the results. It shows that the summer and winter runoffs are expected to be increased and spring runoff to be decreased for the future 3 periods relative to past 30-year reference period. It also provides that annual average runoff increased over all sub-basins, but the increases in the northern basins including Han River basin are greater than those in the southern basins. Due to the reason that the increase in annual average runoff is mainly caused by the increase in summer runoff and consequently the seasonal runoff variations according to climate change would be severe, the climate change impact on Korean water resources could intensify the difficulties to water resources conservation and management. On the other hand, as regards to the uncertainties, the highest and lowest ones are in winter and summer seasons, respectively.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.