• Title/Summary/Keyword: Gauss curvature

Search Result 45, Processing Time 0.024 seconds

CURVATURES OF SEMI-SYMMETRIC METRIC CONNECTIONS ON STATISTICAL MANIFOLDS

  • Balgeshir, Mohammad Bagher Kazemi;Salahvarzi, Shiva
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.149-164
    • /
    • 2021
  • By using a statistical connection, we define a semi-symmetric metric connection on statistical manifolds and study the geometry of these manifolds and their submanifolds. We show the symmetry properties of the curvature tensor with respect to the semi-symmetric metric connections. Also, we prove the induced connection on a submanifold with respect to a semi-symmetric metric connection is a semi-symmetric metric connection and the second fundamental form coincides with the second fundamental form of the Levi-Civita connection. Furthermore, we obtain the Gauss, Codazzi and Ricci equations with respect to the new connection. Finally, we construct non-trivial examples of statistical manifolds admitting a semi-symmetric metric connection.

BI-ROTATIONAL HYPERSURFACE SATISFYING ∆IIIx =𝒜x IN 4-SPACE

  • Guler, Erhan;Yayli, Yusuf;Hacisalihoglu, Hasan Hilmi
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • We examine the bi-rotational hypersurface x = x(u, v, w) with the third Laplace-Beltrami operator in the four dimensional Euclidean space 𝔼4. Giving the i-th curvatures of the hypersurface x, we obtain the third Laplace-Beltrami operator of the bi-rotational hypersurface satisfying ∆IIIx =𝒜x for some 4 × 4 matrix 𝒜.

VOLUME PROPERTIES AND A CHARACTERIZATION OF ELLIPTIC PARABOLOIDS

  • Dong-Soo Kim;Kyung Bum Lee;Booseon Song;Incheon Kim;Min Seong Hwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.125-133
    • /
    • 2023
  • We establish a characterization theorem of elliptic paraboloids in the (n+1)-dimensional Euclidean space 𝔼n+1 with extrinsic properties such as the (n+1)-dimensional volumes of regions enclosed by the hyperplanes and hypersurfaces, and the n-dimensional areas of projections of the sections of hypersurfaces cut off by hyperplanes.

Dipole Distributions on a Hyperboloidal Panel (쌍곡면 패널에의 다이폴 분포)

  • Chang-Sup Lee;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.32-42
    • /
    • 1995
  • When the thickness becomes so small as in the case of the trailing edge of the propeller blade or when the curvature of the surface varies rapidly as in ship stem, the existing panel method employing a flat-surface panel, obtained by collapsing the original non-planar surface into its mean location, suffers the leakage problem and also gives inaccurate induction upon the field point very close to the panel. The hyperboloidal panel deals with the induction from the dipole distributed on the non-planar surface without approximation, overcoming the defects of the flat-surface panel. This paper introduces two distinct derivations of the formulae to compute the integral for the potential induced by a dipole of uniform density distributed on a non-planar hyperboloidal surface element. One method is based on the Gauss-Bonnet theorem and the other is based on the transformation of the surface integral into a line integral.

  • PDF

An Analysis of Continuous Beam by Material Non-linear Transfer Matrix Method (재료비선형 전달행렬법에 의한 연속보의 해석)

  • Seo, Hyun Su;Kim, Jin Sup;Kwon, Min Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.77-84
    • /
    • 2011
  • This study is to develop nonlinear analysis algorithm for transfer matrix method, which can be applied to continuous beam analysis. Gauss-Lobatto integral rule is adopted and the transfer matrix is derived from stiffness matrix. In the transfer matrix method, the system equation has a constant number of unknowns regardless of number of D.O.F. Therefore, the transfer matrix method has computational efficiencies not only in linear elastic analysis but also in nonlinear analysis. To verify the developed method, the analysis results of several examples are compared with commercial code in moment-curvature, moment-displacement and load-displacement relation.

Exact third-order static and free vibration analyses of functionally graded porous curved beam

  • Beg, Mirza S.;Khalid, Hasan M.;Yasin, Mohd Y.;Hadji, L.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • An exact solution based on refined third-order theory (TOT) has been presented for functionally graded porous curved beams having deep curvature. The displacement field of the refined TOT is derived by imposing the shear free conditions at the outer and inner surfaces of curved beams. The properties of the two phase composite are tailored according the power law rule and the effective properties are computed using Mori-Tanaka homogenization scheme. The equations of motion as well as consistent boundary conditions are derived using the Hamilton's principle. The curved beam stiffness coefficients (A, B, D) are obtained numerically using six-point Gauss integration scheme without compromising the accuracy due to deepness (1 + z/R) terms. The porosity has been modeled assuming symmetric (even) as well as asymmetric (uneven) distributions across the cross section of curved beam. The programming has been performed in MATLAB and is validated with the results available in the literature as well as 2D finite element model developed in ABAQUS. The effect of inclusion of 1 + z/R terms is studied for deflection, stresses and natural frequencies for FG curved beams of different radii of curvature. Results presented in this work will be useful for comparison of future studies.

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Curvature Radius of Equivalent Lens Obtained by Recursive Numerical Solving of Gaussian Equations (재귀적 수치 계산법을 이용한 등가 렌즈의 곡률 계산)

  • Lee, Kyu Haeng
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.275-286
    • /
    • 2022
  • As a first step in the optical design process, we derive a recursive numerical calculation method that can give a solution to the Gaussian equation that the paraxial rays satisfy. Given the refractive power, the angle of incidence to the first principal plane of the lens, the angle of exit to the second principal plane of the lens, and the distance between the principal planes, the radii of curvature of the front and back surfaces of a lens can be obtained by applying the recursive numerical calculation method proposed in this paper according to the thickness of the lens. If a module consists of two or more lenses, the thickness and radius of curvature of each lens can be similarly determined after selecting the distance between the principal planes of the lens under the condition of the design specification while increasing the number of lenses one by one.

THE RICCI TENSOR OF REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Perez Juan De Dios;Suh Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.211-235
    • /
    • 2007
  • In this paper, first we introduce the full expression of the curvature tensor of a real hypersurface M in complex two-plane Grass-mannians $G_2(\mathbb{C}^{m+2})$ from the equation of Gauss and derive a new formula for the Ricci tensor of M in $G_2(\mathbb{C}^{m+2})$. Next we prove that there do not exist any Hopf real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with parallel and commuting Ricci tensor. Finally we show that there do not exist any Einstein Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$.