• Title/Summary/Keyword: Gate to Source Capacitance($C_{gs}$)

Search Result 7, Processing Time 0.023 seconds

C-V Characteristics of GaAs MESFETs (GaAs MESFET의 정전용량에 관한 특성 연구)

  • 박지홍;원창섭;안형근;한득영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.895-900
    • /
    • 2000
  • In this paper, C-V characteristics based on the structure of GaAs MESFET’s has been proposed with wide range of applied voltages and temperatures. Small signal capacitance; gate-source and gate-drain capacitances are represented by analytical expressions which are classified into two different regions; linear and saturation regions with bias voltages. The expression contains two variables; the built-in voltage( $V_{vi}$ )and the depletion width(W). Submicron gate length MESFETs has been selected to prove the validity of the theoretical perdiction and shows good agreement with the experimental data over the wide range of applied voltages.

  • PDF

Effects of Source and Load Impedance on the Linearity of GaAs MESFET (GaAs MESFET의 소오스 및 부하 임피던스가 선형성에 미치는 영향)

  • 안광호;이승학;정윤하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.663-671
    • /
    • 1999
  • The linearity of the GaAs FET power amplifier(PA) is greatly influenced by source and load impedance for the FETs. The third order intermodulation products, IM3, from the GaAs FET PA are investigated in relation with source and load impedance. From heuristic as well as analytic point of view, e.g., Volterra series analysis, is employed to analyze the effects of nonlinear circuit elements, gate-source capacitance, $C_{gs}$, and drain-source current, $I_{ds}$. The sweet spots where soure and load impedance produce the least intermodulation products are calculated and compared with the load and source pull data with good agreements. It also shows that source impedance has a greater effect on the intermodulation products than the load impedcnce.

  • PDF

A Study on Frequency Response of GaAs MESFET with different Temperatures (온도변화에 따른 GaAs MESFET의 주파수 특성에 관한 연구)

  • 정태오;박지홍;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.550-553
    • /
    • 2001
  • In this study, unity current gain frequency f$\_$T/ of GaAs MESFET is predicted with different temperatures up to 400 $^{\circ}C$. Temperature dependence parameters of the device including intrinsic carrier concentration n$\_$i/ effective mass, depletion width are considered to be temperature dependent. Small signal parameters such as gate-source, gate dran capacitances C$\_$gs/ C$\_$gd/ are correlated with transconductance g$\_$m/ to predict the unity current gain frequency. The extrinsic capacitance which plays an important roles in high frequency region has been taken into consideration in evaluating total capacitance by using elliptic integral through the substrate. From the results, f$\_$T/ decreases as the temperature increases due to the increase of small signal capacitances and the mobility degradation. Finally the extrinsic elements of capacitances have been proved to be critical in deciding f$\_$T/ which are originated from the design rule of the device.

  • PDF

Decrease of Parasitic Capacitance for Improvement of RF Performance of Multi-finger MOSFETs in 90-nm CMOS Technology

  • Jang, Seong-Yong;Kwon, Sung-Kyu;Shin, Jong-Kwan;Yu, Jae-Nam;Oh, Sun-Ho;Jeong, Jin-Woong;Song, Hyeong-Sub;Kim, Choul-Young;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.312-317
    • /
    • 2015
  • In this paper, the RF characteristics of multi-finger MOSFETs were improved by decreasing the parasitic capacitance in spite of increased gate resistance in a 90-nm CMOS technology. Two types of device structures were designed to compare the parasitic capacitance in the gate-to-source ($C_{gs}$) and gate-to-drain ($C_{gd}$) configurations. The radio frequency (RF) performance of multi-finger MOSFETs, such as cut-off frequency ($f_T$) and maximum-oscillation frequency ($f_{max}$) improved by approximately 10% by reducing the parasitic capacitance about 8.2% while maintaining the DC performance.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

A CMOS Stacked-FET Power Amplifier Using PMOS Linearizer with Improved AM-PM

  • Kim, Unha;Woo, Jung-Lin;Park, Sunghwan;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.68-73
    • /
    • 2014
  • A linear stacked field-effect transistor (FET) power amplifier (PA) is implemented using a $0.18-{\mu}m$ silicon-on-insulator CMOS process for W-CDMA handset applications. Phase distortion by the nonlinear gate-source capacitance ($C_{gs}$) of the common-source transistor, which is one of the major nonlinear sources for intermodulation distortion, is compensated by employing a PMOS linearizer with improved AM-PM. The linearizer is used at the gate of the driver-stage instead of main-stage transistor, thereby avoiding excessive capacitance loading while compensating the AM-PM distortions of both stages. The fabricated 836.5 MHz linear PA module shows an adjacent channel leakage ratio better than -40 dBc up to the rated linear output power of 27.1 dBm, and power-added efficiency of 45.6% at 27.1 dBm without digital pre-distortion.

DC and RF Analysis of Geometrical Parameter Changes in the Current Aperture Vertical Electron Transistor

  • Kang, Hye Su;Seo, Jae Hwa;Yoon, Young Jun;Cho, Min Su;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1763-1768
    • /
    • 2016
  • This paper presents the electrical characteristics of the gallium nitride (GaN) current aperture vertical electron transistor (CAVET) by using two-dimensional (2-D) technology computer-aided design (TCAD) simulations. The CAVETs are considered as the alternative device due to their high breakdown voltage and high integration density in the high-power applications. The optimized design for the CAVET focused on the electrical performances according to the different gate-source length ($L_{GS}$) and aperture length ($L_{AP}$). We analyze DC and RF parameters inducing on-state current ($I_{on}$), threshold voltage ($V_t$), breakdown voltage ($V_B$), transconductance ($g_m$), gate capacitance ($C_{gg}$), cut-off frequency ($f_T$), and maximum oscillation frequency ($f_{max}$).