Lightweight ciphers are increasingly employed in cryptography because of the high demand for secure data transmission in wireless sensor network, embedded devices, and Internet of Things. The PRESENT algorithm as an ultralightweight block cipher provides better solution for secure hardware cryptography with low power consumption and minimum resource. This study generates the key using key rotation and substitution method, which contains key rotation, key switching, and binary-coded decimal-based key generation used in image encryption. The key rotation and substitution-based PRESENT architecture is proposed to increase security level for data stream and randomness in cipher through providing high resistance to attacks. Lookup table is used to design the key scheduling module, thus reducing the area of architecture. Field-programmable gate array (FPGA) performances are evaluated for the proposed and conventional methods. In Virtex 6 device, the proposed key rotation and substitution PRESENT architecture occupied 72 lookup tables, 65 flip flops, and 35 slices which are comparably less to the existing architecture.
Radio Frequency IDentification (RFID) 시스템은 최근 수많은 산업분야에서 각광받고 있는 근거리 자동 인식 기술이다. 이러한 RFID 시스템에서 전송 데이터에 대한 보안과 프라이버시 보호는 점차 심각한 문제로 인식되고 있으며, 이를 해결하기 위해서는 강도 높은 암호 알고리즘을 이용한 전송 데이터의 암호화가 필수적이다. 본 논문에서는 이러한 문제를 해결하기 위해 RFID 태그에 구현 가능한 초소형 Advanced Encryption Standard (AES) 연산기를 제안한다. 제안하는 연산기는 3,992 게이트 카운트의 작은 크기를 가지면서 암호화와 복호화가 모두 가능하다. 또한 128-비트 한 블록에 대해 암호화를 446 클락 사이클, 복호화를 607 클락 사이클에 처리하므로 기존에 발표된 초소형 AES 연산기들에 비해 각각 55%와 40% 이상 개선된 성능을 가진다.
IEIE Transactions on Smart Processing and Computing
/
제6권2호
/
pp.133-139
/
2017
Vehicles have increasingly evolved and become intelligent with convergence of information and communications technologies (ICT). Vehicle communications (VC) has become one of the major necessities for intelligent vehicles. However, VC suffers from serious security problems that hinder its commercialization. Hence, the IEEE 1609 Wireless Access Vehicular Environment (WAVE) protocol defines a security service for VC. This service includes Advanced Encryption Standard-Counter with CBC-MAC (AES-CCM) for data encryption in VC. A high-speed AES-CCM crypto module is necessary, because VC requires a fast communication rate between vehicles. In this study, we propose and implement an efficient AES-CCM hardware architecture for high-speed VC. First, we propose a 32-bit substitution table (S_Box) to reduce the AES module latency. Second, we employ key box register files to save key expansion results. Third, we save the input and processed data to internal register files for secure encryption and to secure data from external attacks. Finally, we design a parallel architecture for both cipher block chaining message authentication code (CBC-MAC) and the counter module in AES-CCM to improve performance. For implementation of the field programmable gate array (FPGA) hardware, we use a Xilinx Virtex-5 FPGA chip. The entire operation of the AES-CCM module is validated by timing simulations in Xilinx ISE at a speed of 166.2 MHz.
Using biometrics to verify a person's identity has several advantages over the present practice of personal identification numbers (PINs) and passwords. To gain maximum security in a verification system using biometrics, the computation of the verification as well as the storing of the biometric pattern has to take place in a smart card. However, there is an open issue of integrating biometrics into a smart card because of its limited resources (processing power and memory space). In this paper, we propose a speaker verification algorithm using a support vector machine (SVM) with a very few features, and implemented it on a 32-bit smart card. The proposed algorithm can reduce the required memory space by a factor of more than 100 and can be executed in real-time. Also, we propose a hardware design for the algorithm on a field-programmable gate array (FPGA)-based platform. Based on the experimental results, our SVM solution can provide superior performance over typical speaker verification solutions. Furthermore, our FPGA-based solution can achieve a speed-up of 50 times over a software-based solution.
International journal of advanced smart convergence
/
제8권2호
/
pp.77-87
/
2019
One of important concerns in information security is to control information flow. It is whether to protect confidential information from being leaked, or to protect trusted information from being tainted. In this paper, we present Piosk (Physical blockage of Information flow Kiosk) that addresses both the problems practically. Piosk can forestall and prevent the leakage of information, and defend inner tangible assets against a variety of malwares as well. When a visitor who carries a re-writable portable storage device, must insert the device into Piosk installed next to the security gate. Then, Piosk scans the device at the very moment, and detects & repairs malicious codes that might be exist. After that, Piosk writes the contents (including sanitized ones) on a new read-only portable device such as a compact disk. By doing so, the leakage of internal information through both insiders and outsiders can be prevented physically. We have designed and prototyped Piosk. The experimental verification of the Piosk prototype implementation reveals that, Piosk can accurately detect every malware at the same detection level as Virus Total and effectively prevent the leakage of internal information. In addition, we compare Piosk with the state-of-the-art methods and describe the special advantages of Piosk over existing methods.
모바일 장치와 IoT의 보안 프로토콜 구현에 적합한 경량 보안 SoC 설계에 대해 기술한다. Cortex-M0을 CPU로 사용하는 보안 SoC에는 타원곡선 암호 (elliptic curve cryptography) 코어, SHA3 해시 코어, ARIA-AES 블록 암호 코어 및 무작위 난수 생성기 (TRNG) 코어 등의 하드웨어 크립토 엔진들이 내장되어 있다. 핵심 연산장치인 ECC 코어는 SEC2에 정의된 20개의 소수체와 이진체 타원곡선을 지원하며, 부분곱 생성 및 가산 연산과 모듈러 축약 연산이 서브 파이프라인 방식으로 동작하는 워드 기반 몽고메리 곱셈기를 기반으로 설계되었다. 보안 SoC를 Cyclone-5 FPGA 디바이스에 구현하고 타원곡선 디지털 서명 프로토콜의 H/W-S/W 통합 검증을 하였다. 65-nm CMOS 셀 라이브러리로 합성된 보안 SoC는 193,312 등가 게이트와 84 kbyte의 메모리로 구현되었다.
최근 IoT 산업에서 보안의 중요성이 증가하고 있으며, IoT (internet of things) 통신 산업에서는 소형의 하드웨어 칩이 필요하다. 이를 위해 본 논문에서는 대표적인 블록 암호 알고리즘인 AES (advanced encryption standard), ARIA (academy, research, institute, agency)와 CLEFIA를 통합한 저면적 암호화 프로세서를 제안한다. 제안하는 암호화 프로세서는 128 비트 기반으로 라운드 키 생성 과정과 암호화 및 복호화 과정을 하나로 공유하였으며, 각각 알고리즘의 구조를 공유 시켜 면적을 축소하였다. 더불어, 경량 IoT 기기를 포함한 대부분의 IoT 기기나 시스템에 적용이 가능하도록 구현하였다. 본 프로세서는 Verilog HDL (hardware description language)로 기술되었고65nm CMOS 공정을 통해 논리 합성하여 11,080개의 논리 게이트로 구현 가능함을 확인하였다. 결과적으로 각 알고리즘 개별 구현 대비 gate 수 총계에서 약42%의 이점을 보인다.
유한체 $GF(2^m)$의 원소를 표현하기 위한 기저선택은 곱셈기의 효율성에 영향을 미친다. 이중에서 여분표현을 이용한 곱셈기는 모듈러 감산을 빠르게 구성할 수 있는 특징을 이용하여 시간-공간의 trade-off를 효율적으로 제공한다. 따라서 여분표현을 이용한 기존의 곱셈기는 다른 기저로 표현한 곱셈기보다 시간 복잡도 상의 효율성을 제공하나 공간 복잡도가 많이 늘어나는 단점을 가진다. 본 논문에서는 다항식 지수승 연산이 많이 사용된다는 것을 감안해 Left-to-Right 형태의 지수승 환경에 적합한 시간-공간 복잡도 상의 효율성을 가지는 새로운 비트-병렬 곱셈기를 제안한다. 제안하는 곱셈기는 $T_A+({\lceil}{\log}_2m{\rceil})T_x$ 시간 복잡도와 (2m-1)(m+s) 공간 복잡도를 요구하며 ESP(Equally Spaced Polynomial) 기약다항식 기반의 기존 여분표현 곱셈기와 비교해 공간 복잡도는 $2(ms+s^2)$ 감소하며, 시간복잡도는 $T_A+({\lceil}{\log}_2(m+s){\rceil})T_x$에서 $T_A+({\lceil}{\log}_2m{\rceil})T_x$로 감소된다. ($T_A$:2개의 입력에 1개의 출력인 AND 게이트 시간, $T_x$:2개의 입력에 1개의 출력인 XOR 게이트 시간이며 m:ESP기약 다항식 차수, s: ESP기약 다항식의 각항의 차수 간격)
정보 통신의 급속한 발전과 확산으로 전세계가 통신망으로 개방화되고, 정보 자체가 국가 경제 발전을 좌우하는 중요한 변수로 작용하게 되었다. 정보 보안은 특성상 각 국가마다 독단적인 정보보호시스템을 개발하여 독립적으로 그 비밀성을 유지해야 할 필요가 있다 이에 국내 암호 알고리즘의 활용 확대를 위해 국내 표준인 SEED 암호 알고리즘을 적용하여 Xilinx사 XCV300PQ240 칩을 타겟(target)으로 최대 동작 주파수 47.895MHz이고, 등가게이트는 27,285인 음성 암호화 칩을 설계하였다.
IETF에서 IPSec(Internet Protocol Security)[1]의 구조를 발표한 이래 IPSec을 이용한 많은 VPN(Virtual PrivateNetwork)[2][3]이 구축되어 왔다. 이렇게 구축된 VPN에서 사용되는 CG(CryptoGate) 혹은 SG(Security Gateway)는 각각의 망에서 게이트 역할을 한다. 하지만 이런 기존의 CG나 SG는 IPSec의 정책을 사용자가 선택하는 것이 아닌 망 관리자가 일방적으로 서비스하도록 설계되어있다. 이러한 점은 사용자가 자신의 데이터를 평가하여 자율적으로 그에 맞는 서비스를 이용하는 것이 아니므로 사용자가 사용하는 것을 꺼릴 수도 있다. 또한 게이트웨이에 자신의 키를 백업할 수 있도록 하여서 사용자가 다시 이 망에 접근할 경우 다시 키 협상을 하는 것이 아닌 백업해둔 키를 가지고 연결할 수 있도록 하였다. 본 논문은 VPN에서 이러한 점을 고려하여 CG를 설계함으로써 VPN 사용의 확장성을 해결한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.