• 제목/요약/키워드: Gas-phase Analysis

Search Result 882, Processing Time 0.026 seconds

Trace Analysis as TBDMS Derivatives of Organic Acids in Aqueous Samples (TBDMS 유도체로서 수용액 시료중의 유기산 미량분석 연구)

  • Kim, Gyeong Rye;Kim, Jeong Han;Park, Hyeong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.352-359
    • /
    • 1990
  • An effecient gas chromatographic method is described to be used routinely for the rapid profiling and identification of biochemically important organic acids. It involves the solid-phase extraction of organic acids from aqueous samples using Chromosorb P as the solid sorbent and diethyl ether as the eluting solvent, with subsequent triethylamine treatment. The resulting triethylammonium salts of acids were directly converted to volatile tert-butyldimethylsiyl derivatives, which were simultaneously analyzed by two capillary columns of different polarity, DB-5 and DB-1701, under the identical temperature programming condition. The retention index (RI) and area ratio (AR) values of each peak measured on DB-5 and DB-1701 enabled rapid identification of acids by computer RI library search and AR comparison. The application of the present method to the organic acid profiling of various complex samples is demonstrated.

  • PDF

Effect of Hardness of Mating Materials on DLC Tribological Characteristics

  • Na, Byung-Chul;Akihiro Tanaka
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Diamond-like Carbon(DLC) films were deposited on Si wafers by an RF-plasma-assisted CVD using CH$_4$gas. Tribological tests were conducted with the use of a rotating type ball on a disk friction tester with dry air. This study made use of four kinds of mating balls that were made with stainless steel but subjected to different annealing conditions in order to achieve different levels of hardness. In all load conditions, testing results demonstrated that the harder the mating materials, the lower the friction coefficient was. The friction coefficients were fecund to be lower with austenite mating balls than with fully annealed martensite balls. Conversely, the high friction coefficient found in soft martensite balls appeared to be caused by the larger contact area between the DLC film and the ball. The wear tracks on DLC films and mating balls could prove that effect. Measuring the wear track of both DLC films and mating balls revealed a similar tendency compared to the results of friction coefficients. The wear rate of austenite balls was also less than that of fully annealed martensite balls. Friction eoefficients decrease when applied leads exceed critical amount. The wear track on mating balls showed that a certain amount of material transfer occurs from the DLC film to the mating ball during a high friction process. Raman Spectra analysis Showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

CAVITATION ANALYSIS IN A CENTRIFUGAL PUMP USING VOF METHOD (VOF기법을 이용한 원심펌프 내의 공동현상에 관한 유동해석)

  • Lee, W.J.;Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Centrifugal pumps consume considerable amount of energy in various industrial applications. Therefore, improvement of the efficiency of these machines has become a major challenge. Cavitation is a phenomenon which decreases the pump efficiency and even causes structural demage. Hence, the goal of this paper is to investigate the cavitation problem in the single-stage and double-stage centrifugal pumps. The Volume of Fraction (VOF) method has been used for the numerical simulations together with Rayliegh-Plesset model for the gas-liquid two-phase flow inside the pump. In order to capture the turbulent phenomena, the standard k-${\varepsilon}$ turbulence model has been adopted, and the simulations have been done as unsteady cases. In addition, the motion of the rotating parts has been simulated using Multi Reference Frame(MRF) method. The results are presented and compared in terms of hydraulic head and NPSH for both the single-stage and double-stage pumps. The H-Q curves show the effects of cavitation on decreasing the pumps performances.

Effect of Hydrogen on Dezincification of Cu-Zn Brass (Cu-Zn 황동에서 수소가 탈아연 부식에 미치는 영향)

  • Choe, Byung Hak;Lee, Bum Gyu;Jang, Hyeon Su;Jeon, Woo Il;Park, Yong Sung;Lim, Jae Kyun;Lee, Jin Hee;Park, Chan Sung;Kim, Jin Pyo
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.172-178
    • /
    • 2017
  • The aim of this study is to consider the effect hydrogen on dezincification behavior of Cu-Zn alloys. The investigations include microstructural observations with scanning electron microscope and chemical composition analysis with energy dispersive spectrometer. The dezincification layer was found to occur in high pressure hydrogen atmosphere, not in air atmosphere. In addition, the layers penetrated into the inner side along the grain boundaries in the case of hydrogen condition. The shape of the dezincification layers was porous because of Zn dissolution from the ${\alpha}$ or ${\beta}$ phase. In the case of stress corrosion cracks formed in the Cu-Zn microstructure, the dezincification phenomenon with porous voids was also accompanied by grain boundary cracking.

Syringe Infusion-based Contactless Atmospheric Pressure Ionization Mass Spectrometry for Small and Large Biomolecules

  • Lo, Ta-Ju;Chang, Chia-Hsien;Chen, Yu-Chie
    • Mass Spectrometry Letters
    • /
    • v.3 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • In this study, we explored a new approach for generating ions of organics and biomolecules using contactless atmospheric pressure ionization (C-API). That is, a tapered capillary (~20 cm) was connected to a syringe, which was coupled to a syringe pump for providing a given flow rate to introduce sample solution to the proximity of a mass spectrometer. The gas phase ions derived from analytes were readily formed in the capillary outlet, which was very close to the mass spectrometer (~1 mm). No external electric connection was applied on the capillary emitter. This setup is very simple, but it can function as an ion source. This approach can be readily used for the analysis of small molecules such as amino acids and large molecules such as peptides and proteins. The limit of the detection of this approach was estimated to be ~10 pM when using bradykinin as the sample. Thus, we believe that this approach should be very useful for being used as an alternative ion source because of its low cost, high sensitivity, simplicity, and ease of operation.

Microencapsulation Effects of Allyl Isothiocyanate with Modified Starch Using Fluidized Bed Processing

  • Lee, Gyu-Hee;Kang, Hyun-Ah;Kim, Kee-Hyuck;Shin, Myung-Gon
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1071-1075
    • /
    • 2009
  • Allyl isothiocyanate (AI), a volatile compound of mustard, has excellent antimicrobial effects, but its volatility hinders its wide usage as an ingredient of food products. Microencapsulation technique, therefore, was applied for delaying the release time of AI. For delaying the release time of AI, the mustard powder, which contained AI, was microencapsulated with 5% modified starch by using fluidized bed processing. The efficiency of the controlled release of AI at various pH was analyzed by the head space (HS) analysis and solid phase microextraction (SPME) method using gas chromatography (GC). Also, modified starch encapsulated powder was added into kimchi for applying in food industry. As the result, the release time of AI was delayed by microencapsulation with modified starch and the higher pH could be the faster release of AI. Also, the period until the pH values and total acidity of kimchi reached up to 4.5 and 0.6%, which give its malsour taste, was extended by microencapsulation. These results showed that modified starch encapsulated powder could prolong the preservation in food system.

IMPROVEMENT OF CUPID CODE FOR SIMULATING FILMWISE STEAM CONDENSATION IN THE PRESENCE OF NONCONDENSABLE GASES

  • LEE, JEHEE;PARK, GOON-CHERL;CHO, HYOUNG KYU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.567-578
    • /
    • 2015
  • In a nuclear reactor containment, wall condensation forms with noncondensable gases and their accumulation near the condensate film leads to a significant reduction in heat transfer. In the framework of nuclear reactor safety, the film condensation in the presence of noncondensable gases is of high relevance with regards to safety concerns as it is closely associated with peak pressure predictions for containment integrity and the performance of components installed for containment cooling in accident conditions. In the present study, CUPID code, which has been developed by KAERI for the analysis of transient two-phase flows in nuclear reactor components, is improved for simulating film condensation in the presence of noncondensable gases. In order to evaluate the condensate heat transfer accurately in a large system using the two-fluid model, a mass diffusion model, a liquid film model, and a wall film condensation model were implemented into CUPID. For the condensation simulation, a wall function approach with a heat/mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model, and then introduces the simulation result using the improved CUPID for a conceptual condensation problem in a large system.

Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing (황화급속열처리를 이용한 SnS 박막성장 및 온도의존성 연구)

  • Shim, Ji-Hyun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • We fabricated a tin sulfide (SnS) layer with Sn/Mo/glass layers followed by a RTP (rapid thermal processing), and studied the film growth and structural characteristics as a function of annealing temperature and time. The elemental sulfur (S) was cracked thermally and applied to form SnS polycrystalline film out of the Sn percursor at pre-determined pressures in the RTP tube. The sulfurization was done at the temperature from $200^{\circ}C$ to $500^{\circ}C$ for a time period of 10 to 40 min. At ${\leq}300^{\circ}C$, 20 min., p-type SnS thin films was grown and showed the best composition of at.% of [S]/[Sn] $${\sim_=}$$ 1 and [111] preferred orientation as investigated from using XRD (X-ray diffraction) analysis and EDS (energy dispersive spectroscopy) and SEM (scanning electron microscopy), and optical absorption by a UV-VIS spectrometer. In this paper, we report the details of growth characteristics of single phase SnS thin film as a function of annealing temperature and time associated with the pressure and ambient gas in the RTP tube.

Characteristic Variations of H2O2 Concentrations Observed in Seoul (서울시 대기 중 과산화수소 농도 변화 특성)

  • Kim, Joo-Ae;Lee, Mee-Hye;Kim, Yung-Mi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.297-307
    • /
    • 2006
  • During January $2002{\sim}April\;2004$, hydrogen peroxide ($H_{2}O_{2}$) measurements were performed at the campus of Korea University, which is located in the northeastern part of Seoul. Gas phase hydroperoxide was collected in aqueous solution and separated by HPLC. Concentrations were determined by fluorescence using postcolumn enzyme derivatization. This measurement system was improved to be run automatically from sample collection at every 10 minutes through chemical analysis for data collection. Detection limits of $H_{2}O_{2}$ is $10{\sim}17\;pptv$, and the overall uncertainty of the measurements is better than 8%. Two-year measurements of $H_{2}O_{2}$ show typical seasonal variations. Concentrations of $H_{2}O_{2}$ were higher during $June{\sim}October$ and lower during $January{\sim}February$. Maximum concentration of 1-hour averaged $H_{2}O_{2}$ was 6.5 ppbv, which was observed in August and September. In general $H_{2}O_{2}$ concentrations were well correlated with $O_{3}$ concentrations and largely affected by meteorological factors such as temperature and wind direction.

A Simple and Simultaneous Analysis of Volatile Halogenated Hydrocarbons in Indoor Air Using Personal Sampler

  • Jung, Won-Tae;Sohn, Dong-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.373-381
    • /
    • 1993
  • To understand the human exposure levels of volatile halogenated hydrocar-bons in ambient air, a new rapid and convenient analytical method for determination of the compounds in gaseous phase was evaluated and established. The method is based upon passsive diffusion to personal sampler containing adsorbent and solvent extraction followed by purge trap/ on-column cryof-ocusing method. A new method needs no special instrumentation for gas collection because it is based upon the passive diffusion principle. The typical chromatogram obtained in this study proved that rapid and simultaneous determination of target analytes was possible with good resolution. The developed method was successfully applied to determine the volatile halogenated hydrocarbons in indoor air and the values obtained by this new method were compared with those by direct suction method. The concentration of carbon tetrachloride, 1,1,2-trichloroethylene, chloroform showed the values below 400$\mug/m^3$ except the maximum of 1,513$\mug/m^3$ of chloroform. 1,1,1-Trichloroethane showed approximately 1,000 to 5,000$\mug/m^3$ range of diurnal fluctuation in indoor air.

  • PDF