Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.3.172

Effect of Hydrogen on Dezincification of Cu-Zn Brass  

Choe, Byung Hak (Dept. of Metal and Materials Engineering, Gangneung-Wonju National University)
Lee, Bum Gyu (Dept. of Metal and Materials Engineering, Gangneung-Wonju National University)
Jang, Hyeon Su (Dept. of Metal and Materials Engineering, Gangneung-Wonju National University)
Jeon, Woo Il (ExcelLab)
Park, Yong Sung (ExcelLab)
Lim, Jae Kyun (ExcelLab)
Lee, Jin Hee (Oil & Gas Technology SK E&C)
Park, Chan Sung (Forensic Engineering Department, National Forensic Service)
Kim, Jin Pyo (Forensic Engineering Department, National Forensic Service)
Publication Information
Korean Journal of Materials Research / v.27, no.3, 2017 , pp. 172-178 More about this Journal
Abstract
The aim of this study is to consider the effect hydrogen on dezincification behavior of Cu-Zn alloys. The investigations include microstructural observations with scanning electron microscope and chemical composition analysis with energy dispersive spectrometer. The dezincification layer was found to occur in high pressure hydrogen atmosphere, not in air atmosphere. In addition, the layers penetrated into the inner side along the grain boundaries in the case of hydrogen condition. The shape of the dezincification layers was porous because of Zn dissolution from the ${\alpha}$ or ${\beta}$ phase. In the case of stress corrosion cracks formed in the Cu-Zn microstructure, the dezincification phenomenon with porous voids was also accompanied by grain boundary cracking.
Keywords
Cu-Zn alloy; hydrogen; dezincification; stress corrosion crack;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. R. Davis, Copper and Copper Alloys, ASM international, 419 (2001).
2 U. B. Back, B. H. Choe, J. H. Shim, Y. U. Kim, Y. S. Kim, S. S Kim, S. H. Nam and K. Y. Hong, Korean J. Met. Mater., 53, 82 (2015).
3 H. L. Li, K. W. Gao. W. Y Chu, Corros. Sci., 40, 1663 (1998).   DOI
4 W. Y. Chu, K. W. Gao, Y. P. Liu and L. J. Qiao, J. Mater. Sci Technol., 19, 287 (2003).
5 H. L. Li, K. W. Gao. W. Y. Chu, Y. P. liu and L. J. Qiao, Chinese J. Nonferrous Met. Soc., 13, 353 (2003).
6 K. W. Gao, W. Y. Chu, H. L. Li, Y. P. Liu and L. J. Qiao, Mater. Sci. Eng., A, 371, 51 (2004).   DOI
7 C. W. Stillwell and E. S. Turnipseed, Ind. Eng. Chem., 26, 740 (1934).   DOI
8 G. D. Walker, Corrosion, 33, 262 (1977).   DOI
9 J. Woodtli and R. Kieselbach, Eng. Failure Anal., 7, 427 (2000).   DOI
10 P. M. Scott, M. L. Calvar, TMS, 657 (1993).
11 S. Suzuki, K. Takamori, K. Kumagai, A. Sakashita, N. Yamashita, C. Shitara and Y. Okamura, E-J. Adv. Maintenance, 1, 1 (2009).
12 T. Furukawa, S. Kato and E. Yoshida, J. Nucl. Mater., 392, 249 (2009).   DOI