Browse > Article
http://dx.doi.org/10.5478/MSL.2012.3.4.87

Syringe Infusion-based Contactless Atmospheric Pressure Ionization Mass Spectrometry for Small and Large Biomolecules  

Lo, Ta-Ju (Department of Applied Chemistry, National Chiao Tung University)
Chang, Chia-Hsien (Department of Applied Chemistry, National Chiao Tung University)
Chen, Yu-Chie (Department of Applied Chemistry, National Chiao Tung University)
Publication Information
Mass Spectrometry Letters / v.3, no.4, 2012 , pp. 87-92 More about this Journal
Abstract
In this study, we explored a new approach for generating ions of organics and biomolecules using contactless atmospheric pressure ionization (C-API). That is, a tapered capillary (~20 cm) was connected to a syringe, which was coupled to a syringe pump for providing a given flow rate to introduce sample solution to the proximity of a mass spectrometer. The gas phase ions derived from analytes were readily formed in the capillary outlet, which was very close to the mass spectrometer (~1 mm). No external electric connection was applied on the capillary emitter. This setup is very simple, but it can function as an ion source. This approach can be readily used for the analysis of small molecules such as amino acids and large molecules such as peptides and proteins. The limit of the detection of this approach was estimated to be ~10 pM when using bradykinin as the sample. Thus, we believe that this approach should be very useful for being used as an alternative ion source because of its low cost, high sensitivity, simplicity, and ease of operation.
Keywords
Electrospray ionization; Ion source; Atmospheric pressure ionization; C-API; Mass spectrometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712.   DOI   ScienceOn
2 Nemes, P.; Vertes, A. Anal. Chem. 2007, 79, 8098.   DOI   ScienceOn
3 Haapala, M.; Pól, J.; Saarela, V.; Arvola, V.; Kotiaho, T.; Ketola, R. A.; Franssila, S.; Kauppila, T. J.; Kostiainen, R. Anal. Chem. 2007, 79, 7867.   DOI   ScienceOn
4 Trimpin, S.; Inutan, E. D.; Herath, T. N.; McEwen, C. N. Mol. Cell Proteom. 2009, 9, 362.
5 Weston, D. J. Analyst 2010, 135, 661.   DOI   ScienceOn
6 Huang, M.-Z.; Yuan, C.-H.; Cheng, S.-C.; Cho, Y.-T.; Shiea, J. Annu. Rev. Anal. Chem. 2010, 3, 43.   DOI   ScienceOn
7 Alberici, R. M.; Simas, R. C.; Sanvido, G. B.; Romao, W.; Lalli, P. M.; Benassi, M.; Cunha, I. B.; Eberlin, M. N. Anal. Bioanal. Chem. 2010, 398, 265.   DOI
8 Xiaoxiao, M.; Sichun, Z.; Xinrong, Z. TRAC-Trend Anal. Chem. 2012, 35, 50.   DOI   ScienceOn
9 McEwen, C. N.; McKay, R. G.; Larsen, B. S. Anal. Chem. 2005, 77, 7826.   DOI   ScienceOn
10 McEwen, C. N.; Gutteridge, S. J. Am. Soc. Mass Spectrom. 2007, 18, 1274.   DOI   ScienceOn
11 Fenn, J. B.; Mann, M.; Meng, C.; Wang, S. F.; Whitehouse, C. M. Science 1989, 246, 61.
12 Emmett, M. R.; Andren, P. E.; Caprioli, R. M. J. Neurosci. Methods 1995, 62, 141.   DOI   ScienceOn
13 Wilm, M.; Mann, M. Anal. Chem. 1996, 68, 1.
14 Hsieh, C.-H.; Chang, C.-H.; Urban, P. L.; Chen, Y.-C. Anal. Chem. 2011, 83, 2866.   DOI   ScienceOn
15 Hsieh, C.-H.; Chao, C.-S.; Mong, K.-K. T.; Chen, Y.-C. J. Mass Spectrom. 2012, 47, 586.   DOI   ScienceOn
16 Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471.   DOI   ScienceOn
17 Takats, Z.; Wiseman, J. M.; Cooks, R. G. J. Mass Spectrom. 2005, 40, 1261.   DOI   ScienceOn
18 Miao, Z.; Chen, H.; Liu, P.; Liu, Y. Anal. Chem. 2011, 83, 3994.   DOI   ScienceOn
19 Laskin, J.; Heath, B. S.; Roach, P. J.; Cazares, L. Anal. Chem. 2012, 84, 141.   DOI
20 Zhu, L.; Gamez, C.; Chen, H. W.; Huang, H. X.; Chingin, K.; Zenobi, R. Rapid Commun. Mass Spectrom. 2008, 22, 2993.   DOI   ScienceOn
21 McCullough, B. J.; Bristow, T.; O'Connor, G.; Hopley, C. Rapid Commun. Mass Spectrom. 2011, 25, 1445.   DOI   ScienceOn
22 Cheng, C-.Y.; Yuan, C.-H.; Cheng, S.-C.; Huang, M.-Z.; Chang, H.-C.; Cheng, T.-L.; Yeh, C.-S.; Shiea, J. Anal. Chem. 2008, 80, 7699.   DOI   ScienceOn
23 Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R.G.; Ouyang, Z. Anal. Chem. 2008, 80, 9097.   DOI   ScienceOn
24 Santos, V. G.; Regiani, T.; Dias, F. F. G.; Romao, W.; Jara, J. L. P.; Klitzke, C. F.; Coelho, F.; Eberlin, M. N. Anal. Chem. 2011, 83, 1375.   DOI   ScienceOn
25 Chen, T.-Y; Chao, C.-S; Mong, K.-K. T.; Chen, Y.-C. Chem. Commun. 2010, 46, 8347.   DOI   ScienceOn
26 Chen, T.-Y.; Lin, J.-Y.; Chen, Y.-C. J. Am. Soc. Mass Spectrom. 2010, 21, 1547.   DOI   ScienceOn
27 Lo, T.-J.; Chen, T.-Y.; Chen, Y.-C. J. Mass Spectrom. 2012, 47, 480.   DOI   ScienceOn
28 Hirabayashi, A.; Sakairi, M.; Koizumi, H. Anal. Chem. 1995, 67, 2878.   DOI   ScienceOn
29 Dams, R.; Benijts, T.; Gunther, W.; Lambert, W.; De Leenheer, A. Anal. Chem. 2002, 74, 3206.   DOI   ScienceOn
30 Haddad, R.; Milagre, H. M.; Catharino, R. R.; Eberlin, M. N. Anal. Chem. 2008, 80, 2744.   DOI   ScienceOn
31 Cody, R. B.; Laramee, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297.   DOI   ScienceOn