• Title/Summary/Keyword: Gas-Insulated Transformer

Search Result 52, Processing Time 0.041 seconds

Development of 154kV Gas Insulated Transformer (154kV급 가스절연 변압기 개발)

  • Woo J.H.;Choi Y.L.;Kim K.M.;Lee J.Y.;Seok B.Y.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.532-539
    • /
    • 2005
  • The demand of Gas Insulated Transformer(GIT) using $SF_6$ gas as insulating and cooling medium is being increased dramatically in the underground substation of urban area because it has the advantages of non-flammable and non-explosive, etc. This paper describes the structural features and advantages of the gas insulated transformer compare to an oil immersed transformer, and presents a brief overview of the consideration and technology which apply to $SF_6$ gas insulated transformer.

A Study on the Condition Diagnosis for A Gas-insulated Transformer using Decomposition Gas Analysis (가스분해 분석기법을 활용한 가스 전열 변압기의 상태 진단 연구)

  • Ah-Reum, Kim;Byeong Sub, Kwak;Tae-Hyun, Jun;Hyun-joo, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • A growing number of gas-insulated transformers in underground power substations in urban areas are approaching 20 years of operation, the time when failures begin to occur. It is thus essential to prevent failure through accurate condition diagnosis of the given facility. Various solid insulation materials exist inside of the transformers, and the generated decomposition gas may differ for each gas-insulated equipment. In this study, a simulation system was designed to analyze the deterioration characteristics of SF6 decomposition gas and insulation materials under the conditions of partial discharge and thermal fault for diagnosis of gas-insulated transformers. Degradation characteristics of the insulation materials was determined using an automatic viscometer and FT-IR. The analysis results showed that the pattern of decomposition gas generation under partial discharge and thermal fault was different. In particular, acetaldehyde was detected under a thermal fault in all types of insulation, but not under partial discharge or an arc condition. In addition, in the case of insulation materials, deterioration of the insulation itself rapidly progressed as the experimental temperature increased. It was confirmed that it was possible to diagnose the internal discharge or thermal fault occurrence of the transformer through the ratio and type of decomposition gas generated in the gas-insulated transformer.

Study on Decomposition Gas Characteristics and Condition Diagnosis for Gas-Insulated Transformer by Chemical Analysis

  • Kim, Ah-Reum;Kwak, Byeong Sub;Jun, Tae-Hyun;Park, Hyun-Joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Since SF6 gas was discovered in the early 1900s, it has been widely used as an insulation material for electrical equipment. While various indicators have been developed to diagnose oil-immersed transformers, there are still insufficient indicators for the diagnosis of gas-insulated transformers. When necessary, chemical diagnostic methods can be used for gas-insulated transformers. However, the field suitability and accuracy of those methods for transformer diagnosis have not been verified. In addition, since various types of decomposition gases are generated therein, it is also necessary to establish appropriate analysis methods to cover the variety of gases. In this study, a gas-insulated transformer was diagnosed through the analysis of decomposition gases. Reliability assessments of both simple analysis methods suitable for on-site tests and precise analysis methods for laboratory level tests were performed. Using these methods, a gas analysis was performed for the internal decomposition gases of a 154 kV transformer in operation. In addition, simulated discharge and thermal fault experiments were demonstrated. Each major decomposition gas generation characteristics was identified. The results showed that an approximate diagnosis of the inside of a gas-insulated transformer is possible by analyzing SO2, SOF2, and CO using simple analysis methods on-site. In addition, since there are differences in the types of decomposition gas generation patterns with various solid materials of the internal transformer, a detailed examination should be performed by using precise analysis methods in the laboratory.

Insulation Characteristics and Partial Discharge for the SF6 Gas Insulated Transformer (SF6 가스 절연변압기의 절연특성과 부분방전)

  • 선종호;김우성;김광화;오원근;하영식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.740-747
    • /
    • 2000
  • This paper describes insulation characteristics and partial discharge for the SF6 gas insulated transformer. The characteristic of gas insulated transformer and the degradation sequence of solid insulation under SF6 gas atmosphere were explained. The model electrode system of the types that the aramid papers were inserted between two sphere electrodes was prepared. The partial discharge tests were carried out to that system and the insulation characteristics were considered.

  • PDF

A Comparative Study of The PD Pattern Analysis Based on PRPD and CAPD for The Diagnosis of Gas Insulated Transformer (GITr(Gas Insulated Transformer) 내부에 발생되는 PD 신호의 패턴분석을 위한 PRPD와 CAPD 적용결과 비교)

  • Jung, Seung-Yong;Koo, Ja-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.308-312
    • /
    • 2006
  • Partial Discharge (PD) phenomena occurred by different nature of insulating defects has been regarded as a random process by which Phase Resolved Partial Discharge Analysis(PRPDA) has been proposed and then commercially accepted for the diagnosis of the power apparatus since more than three decades. Moreover, for the same purpose, a novel approach based on the Chaotic Analysis(CAPD) has been proposed since 2000, in which Partial Discharge(PD) phenomena is suggested to be considered as a deterministic dynamical process. In this work, for the diagnosis of Gas Insulated Transformer(GITr), four different types of specimen were fabricated as a model of the possible defects that might possibly cause its sudden failures such as turn to turn insulation, inter coil insulation, free moving particle and protrusion. For this purpose, these defects are introduced into the Gas Insulated Transformer(GITr) mock-up and experimental investigations have been carried out in order to analyze the related Partial Discharge(PD) patterns by means of both Phase Resolved Partial Discharge Analysis(PRPDA) and Chaotic Analysis(CAPD) respectively and then their comparisons are made systematically.

$SF_6$ Gas Insulated Transformer ($SF_6$가스절연 변압기)

  • Cho, G.J.;Cho, K.D.;Ha, Y.S.;Cho, K.B.;Noh, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.304-309
    • /
    • 1991
  • We introduce the trend, of several countries, to the gas insulated transformer recently coming into the spot light by the advantages of less weight, GIS-lization, low noise level and easiness to decrease environmental pollutions, and the insulating gases. the cooling media and the insulating materials used for transformer. Hereinafter, additively the design of proto type $SF_6$ gas insulated transformer (insulation, cooling), which was developed by us(HICO) from 1987. 2 through 1990. 3, the manufacturing processes(leak protection, pressure, drying of main body), the accessories, the protective system, the cooling system, the method and the results of test and the evaluation of economics compared with conventional oil-filled transformer are represented.

  • PDF

A study on the electrical characteristics of the fluorocarbon (Fluorocarbon의 전기적 특성연구)

  • 허창수;조한구
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.217-223
    • /
    • 1995
  • In this paper, we investigated physical properties and electrical characteristics of the fluorocarbon that used as coolants for large power gas-insulated transformer. Volume resistivity of the fluorocarbon was .rho.=1.87*10$^{15}$ [.ohm.cm] at 1 atm, 27.deg. C. Dielectric constant was 1.86 and decreases as temperature increase. The breakdown voltage at 1 atm was higher than that of transformer oil. The breakdown voltage of fluorocarbon vapor was about 18kV when pressure in a test chamber increases over lkg/cm$^{2}$. When fluorocarbon was mixed with SF$_{6}$ gas, breakdown voltage of the mixed was higher than that of fluorocarbon. Then fluorocarbon leads to increase over 4kg/cm$^{2}$ in pressure as temperature increase. Therefore, when a gas-insulated transformer is manufactured, the design must be taken into consideration a high-pressure.

  • PDF

A Study of Insulation Design of a Gas Transformer Using Extra Turns.) (여유턴 방식에 의한 가스변압기의 절연 설계에 관한 연구)

  • Heo, Woo-Heng;Ha, Young-Sik;Hong, Jung-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.115-121
    • /
    • 2001
  • This paper deals with the electrical insulation design of a gas insulated power transformer based on extra turns method satisfying the impulse test performed in the worst condition. The calculation of electrical strength in insulation structure was done by 2D finite element method. The gas insulated power transformer was manufactured by selecting the optimum arrangement among design results. the validity of the design result is verified by the impulse test of manufactured machine.

  • PDF

The decision of the inner fault of 154kV Gas Insulated Transformer through analyzing ingredients of insulated gas. (절연가스 성분분석을 통한 154kV 가스절연변압기 내부결함 판정)

  • Mun, Byong-Seon;Tark, Eui-Gyun;Lee, Tae-Kyu;Park, Chan-Eui;Lee, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.447-448
    • /
    • 2015
  • In order to looking for method of detecting inner fault of a 154kV GIT(Gas Insulated Transformer), it was considered that diagnosis partial discharge(PD) in UHF band and that analyze the ingredients of SF6 insulating gas. UHF PD diagnosis that is optimized to GIS was considered unsuitable through checking of inner part of a transformers which PD is detected excessively. The method analyzing the content of six kinds of gas(SOF2, SO2F2, etc)was decided through analysis of chemical degradation and combination process and discharge experiment. With the result applying this method to analyze the content of insulated gas of eighty five Gas Insulated Transformers.

  • PDF

Diagnosis for the Transformer depend on Moisture and Furfural Detecting in Oil (절열유중의 수분 및 Furfural 검출을 이용한 유입변압기 상태진단)

  • Choi Gwang-beom;Eo Soo-young;Kweon Dong-jin;Lee Dong-joon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.546-552
    • /
    • 2005
  • In this paper, a present condition with gas-in-oil diagnosis which used to condition analysis for oil insulated transformer is investigated and reason why hydrogen used to basic diagnosis for the transformer is described. This paper gives an overview of background knowledge that should to consider as moisture detecting of oil immersed paper and how could we approach to life expectancy of oil insulated transformer through detecting furfural compound.