• Title/Summary/Keyword: Gas target

Search Result 851, Processing Time 0.027 seconds

On-line drift compensation of a tin oxide gas sensor for identification of gas mixtures (혼합가스 식별을 위한 반도체식 가스센서의 온라인 드리프트 보상)

  • Shin, Jung-Yeop;Cho, Jeong-Hwan;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.130-132
    • /
    • 2005
  • This paper presents two ART-based neural networks for the identification of gas mixtures subject to the drift. A fuzzy ARTMAP neural network is used for classifying $H_2S$, $NH_3$ and their mixture gases including a reference gas. The other fuzzy ART neural network is utilized to detect the drift of a tin oxide gas sensor by tracking a cluster center of the reference gas. After detecting the drift, the previous cluster center of each gas is updated as much as the drift of the reference gas. By the simulations, the proposed method is shown to compensate the drift on-line without making many categories of target gases compared with the previous studies.

  • PDF

Hollow SnO2 Hemisphere Arrays for Nitric Oxide Gas Sensing

  • Hoang, Nhat Hieu;Nguyen, Minh Vuong;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.667-671
    • /
    • 2013
  • We present an easy method of preparing two-dimensional (2D) periodic hollow tin oxide ($SnO_2$) hemisphere array gas sensors using polystyrene (PS) spheres as a template. The structures were fabricated by the sputter deposition of thin tin (Sn) metal over an array of PS spheres on a planar substrate followed by calcination at an elevated temperature to oxidize Sn to $SnO_2$ while removing the PS template cores. The $SnO_2$ hemisphere array structures were examined by scanning electron microscopy and X-ray diffraction. The structures were calcined at various temperatures and their sensing properties were examined with varying operation temperatures and concentrations of nitric oxide (NO) gas. Their gas-sensing properties were investigated by measuring the electrical resistances in air and the target gases. The measurements were conducted at different NO concentrations and substrate temperatures. A minimum detection limit of 30 ppb, showing a sensitivity of S = 1.6, was observed for NO gas at an operation temperature of $150^{\circ}C$ for a sample having an Sn metal layer thickness corresponding to 30 sec sputtering time and calcined at $600^{\circ}C$ for 2 hr in air. We proved that high porosity in a hollow $SnO_2$ hemisphere structure allows easy diffusion of the target gas molecules. The results confirm that a 2D hollow $SnO_2$ hemisphere array structure of micronmeter sizes can be a good structural morphology for high sensitivity gas sensors.

Deposition of copper oxide by reactive magnetron sputtering

  • Lee, Jun-Ho;Lee, Chi-Yeong;Lee, Jae-Gap
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • Copper oxide films have been deposited on silicon substrates by direct current magnetron sputtering of Cu in O2 / Ar gas mixtures. The target oxidation occurring as a result of either adsorption or ion-plating of reactive gases to the target has a direct effect on the discharge current and the resulting composition of the deposited films. The kinetic model which relates the target oxidation to the discharge current was proposed, showing the one-to-one relationship between discharge current characteristics and film stoichiometry of the deposited films.

  • PDF

A Study on the Necessity to Revise the Standards for the Main Dimensions of Liquefied Gas Carriers (액화가스운반선 주요치수에 대한 기준 개정 필요성에 관한 연구)

  • Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.810-819
    • /
    • 2020
  • Recently, the demand for liquefied gas has been increasing for various reasons, including environmental problems, and as a result, transportation of liquefied gas through a ship is increasing, and several terminals are also being constructed to accommodate it. The size of the terminal to be constructed shall follow the result if the target ship is clearly determined. Otherwise, the size of the vessel that the terminal intends to accept shall be determined, and then, the dimensions of the vessel given in the regulations or standards shall be used. In this regard, it was found that the main dimensions of the proposed vessels are substantially different from those actually operating and the standard for large-sized vessels has not been established in the process of determining the size of the target vessel by using the "Port and Fishing Port Design Standards" and commentary(2017), which recently is most commonly used as port design criteria in order to construct the liquefied gas terminal. Because of these problems, a revision of the standard for the major dimensions of liquefied gas carriers was proposed through an analysis of the current status of ships in service, as there could be many differences between interested parties in determining the size of the target ships and terminals and evaluating the safety of terminals. It is expected that the proposed revision will be used as a more appropriate and realistic criterion for determining the size of ships and terminals in the future and will prevent unnecessary terminal construction costs.

A Study of Odorants and Volatiles Released from Pork Belly Meat When Treated by Different Cooking Methods (삼겹살 구이로부터 발생하는 유해물질의 특성 연구)

  • Kim, Bo-Won;Kim, Ki-Hyun;Kim, Yong-Hyun;Ahn, Jeong-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.211-222
    • /
    • 2014
  • Pork belly meat is one of the most preferred food items for many Korean people. The odorants released from cooking of pork belly meat were measured by three kinds of cooking methods (Charcoal-grill (C), Electric Pan (E), and Gas burner-pan (G)). A total of 16 target compounds including carbonyl compounds, volatile organic compounds, and poly aromatic hydrocarbon were selected and analyzed for comparative purposes. Their emission concentrations were quantified using HPLC-UV, GC-MS, GC-TOF-MS, etc. The gas samples collected by Charcoal-grill cooking showed generally enhanced concentrations of most target compounds among all three kinds of cooking methods. In Charcoal-grill, concentration of benzene, formaldehyde and pyrene went up to 543, 516, and 402 ppb, respectively. It the results are compared in terms of the sum of odor intensity, the highest value (4.25) was also seen from Charcoal-grill. The results of this study confirm that the significantly reduced emission of harmful pollutants can be attained, it pork belly meat is cooked by the Gas or electric pan instead of Charcoal-grill.

Study on the control of fuel-air ratio ofgas swirl burner (가스 스월버너의 공연비 제어에 관한 연구)

  • Kim, I.K.;Kim, Y.S.;Kim, Y.H.;Kim, K.S.;Kim, J.W.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.129-138
    • /
    • 1999
  • In this paper, our main issue is that establishing the control procedure of continuous gas flow rate according to combustion fan RPM. For this, first, we decide the optimum operating condition of gas swirl burner through analysis of combustion characteristics - thermal efficiency, combustion efficiency and exhaust gases such as CO, $CO_{2}$, $O_{2}$, $NO_{x}$ and THC. Second, fuel gas flow rate of gas valve is decided with considering excess air ratio and combustion fan RPM is decided by the target of combustion air flow rate. Finally, experimental operating equation is acquired by regression for gas valve and combustion fan. This equation is the control equation of continuous gas flow rate and always gas flow rate is decided by combustion fan operating RPM.

  • PDF

Fabrication of 1D Metal Oxide Nanostructures Using Glancing Angle Deposition for High Performance Gas Sensors

  • Suh, Jun Min;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.228-234
    • /
    • 2017
  • Gas sensors based on metal-oxide-semiconductors are predominantly used in numerous applications including monitoring indoor air quality and detecting harmful substances such as volatile organic compounds. Nanostructures, e.g., nanoparticles, nanotubes, nanodomes, or nanofibers, have been widely utilized to improve the gas sensing properties of metal-oxide-semiconductors by increasing the effective surface area participating in the surface reaction with target gas molecules. Recently, 1-dimensional (1D) metal oxide nanostructures fabricated using glancing angle deposition (GAD) method with e-beam evaporation have been widely employed to increase the surface-to-volume ratio significantly with large-area uniformity and reproducibility, leading to promising gas sensing properties. Herein, we provide a brief overview of 1D metal oxide nanostructures fabricated using GAD and their gas sensing properties in terms of fabrication methods, morphologies, and additives. Moreover, the gas sensing mechanisms and perspectives are presented.

A Study on Thermal Performances of Micro Gas Sensor with Micro Hotplate (마이크로 핫플레이트를 갖는 마이크로 가스센서의 열적성능에 관한 연구)

  • Joo, Young-Cheol;Im, Jun-Hyoung;Lee, Joon-Hun;Kim, C.K.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.278-285
    • /
    • 2006
  • A micro hotplate for micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material to a target temperature, a micro hotplate was built on the gas sensor. The sensing material was deposited on the heater and electrodes, and did not contact with the silicon base to minimize the heat loss to the silicon base. The electric power to heat up the gas sensor was measured. The temperature distribution of micro gas sensor was analyzed by a CFD program. The predicted electric power to heat up th sensing material showed a good agreement with the measured data. The design of micro gas sensor could be modified to increase the temperature uniformity and to decrease the electric power consumption by optimizing the layout of micro hotplate and electrodes.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

Economical Gas Chamber for In-situ Gas Measurement and Analysis of Gas Response Characteristics according to Sensor Voltage (인시투 가스 측정이 가능한 경제적 가스 챔버 구현 및 센서 전압에 따른 가스 응답 특성 분석)

  • Choi, Yun-Suk;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Breath analysis using a portable device is better than the classical breath analysis system in terms of installation and operation. There is an increasing need to develop cost-effective equipment for testing gas sensors from the viewpoint of functionalities that can be applied applicable to portable devices. In the present study, an economical gas chamber for in-situ gas measurement is implemented with a single gas chamber without using expensive gas storage and control equipment; the gas response characteristics are analyzed using the above-described chamber. The main features of the implemented gas chamber are simple injection procedure, improved gas diffusion, easy measurement and cleaning, support for low-power mode measurement function for portable devices, and open source platform. Moreover, an analysis of gas response characteristics based on changes in sensor voltage show that the sensitivity and 90% response time are affected by the sensor voltage. Furthermore, the sensitivity graph has an inflection point in a specific range. The gas sensor applied in this study showed fast response speed and high sensitivity for sensor voltages of 3.0-3.5 V, regardless of the concentration of acetone gas, the target gas used in this study.