• Title/Summary/Keyword: Gas production

Search Result 2,689, Processing Time 0.025 seconds

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

Effects of Additional Levels of Phyllostachys bambusoides on Ruminal Fermentation Characteristics and Methane Emission in in vitro (왕대의 첨가수준이 반추위 in vitro 발효성상과 메탄 발생량에 미치는 영향)

  • Jo, Seong-Uk;Lee, Shin-Ja;Lee, Ye-Jun;Kim, Hyun-Sang;Eom, Jun-Sik;Choi, You-Young;Bae, Eun-Ji;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.2
    • /
    • pp.241-256
    • /
    • 2021
  • The current study was to evaluate the antioxidant activity of Phyllostachys bambusoides (PHB) as a feed additives and investigate whether its antioxidant activity could be helpful for increasing rumen fermentation characteristics and methane reduction. The antioxidant activity results showed that total polyphenols and flavonoids contents were 43.54 ± 8.68 mg CE/g and 17.13 ± 0.45 mg QE/g, respectively, and the IC50 values for 1,1-diphenyl-2-prcrylhydrazyl (DPPH) and 2,2'-azino-bis (3- ethylbenzthiazoline-6- sulphonic acid) (ABTS) radical scavenging activity were 163.13 ± 19.25 ㎍/mL and 97.07 ± 4.46 ㎍/mL, respectively. Two heads of cannulated Hanwoo (450 ± 30 kg), consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (at 09:00 and 17:30) at 2% of body weight, with free access to water and a mineral block, were used as rumen fluid donors. An in vitro incubation experiment was performed after 6, 12, 24, 48, and 72 hr with PHB added at concentration of 2, 4, and 6% of timothy hay basis. Total gas emission decreased as the amount of PHB addition increased at 6 and 24 hr of incubation. However, PHB addition did not affect total volatile fatty acid production, and methane and carbon dioxide emission also decreased as the amount of addition increased at 48 hr of incubation. Therefore, PHB was expected to be used as methane reducing additives in the ruminants.

Effect of Water Soluble fraction from Japanese Larch Wood on Sawdust Cultivation of Lentinula edodes (일본잎갈나무재의 수용성추출물 첨가가 표고버섯의 톱밥재배에 미치는 영향)

  • Cho, Nam-Seok;Chung, Hung-Chae;Kim, Dong-Hun;Lee, Sang-Sun;Ohga, Shoji;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • The water soluble fractions(WSF) from Japanese larch wood were isolated, purified by anion exchange resin and Sephadex gel filtration and identified its chemical structure by means of periodate oxidation and methylation reactions. Its major components are arabinose and galactose (1 : 3.4). Based on the results of periodate oxidation, methylation and gas chromatographic analysis of purified WSF, main chain is composed of β-1,3-glycosidic linkage among D-galactopyranoses, and two different side chains; β-1,6-glycosidic linkage among 2-3 units of D-galactopyranoses and β-1,6-glycosidic linkage between 1-2 units of D-galactopyranose and L-arabinopyranose. Addition of WSF to culture media of oak mushroom (Lentinula edodes) accelerated the mycelial growth. In the case of PDA cultures, 2 percent addition of WSF in Sanlim No. 6 strain and 4 percent of WSF in Mok-H strain mostly enhanced the mycelial growth of the mushroom. In the case of sawdust cultures, 4 percent addition of WSF in two strains showed the best mycelial growth. High percentages addition of WSF inhibited mycelial growth of the mushroom. Mushroom production was increased with addition of WSF. By the addition of WSF, ergosterol contents in the media were quite high at the colonized stage and rapidly increased at the fruiting stage. Therefore the ergosterol content could be utilized as an indicator to evaluate the culture maturity for the mushroom fruiting.

Comparison of Construction Cost Applied by RC and PC Construction Method for Apartment House and Establishment of OSC Economic Analysis Framework (공동주택 RC 및 PC공법 적용 공사비 비교 및 OSC의 포괄적 경제성 분석 프레임워크 구축)

  • Yun, Won-Gun;Bae, Byung-Yun;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.30-42
    • /
    • 2022
  • OSC is a type of supply chain and value chain that spans the entire process of construction production (planning, design, construction, maintenance, etc.). It is a method of producing the final object by manufacturing it in a factory, transporting it to the site, installing and construction. This research as is the construction cost was compared for each case A, which applied the PC method, and case B, which applied the RC method. In the case of applying the PC method (excluding the PC design cost), compared to the case where only the RC method was applied, the frame construction cost per unit quantity (m3) increased by about 70% (50% based on the total RC construction type). Of the total frame construction cost of PC method application, PC accounted for 90.2%, 'PC manufacturing cost' 54.8%, 'PC assembly cost' 28.5%, and 'transportation cost' accounted for 6.89%. Also a decision-making framework that can consider both costs and benefits was established. In the case of benefits, the construction period, defect repair, disaster occurrence, energy efficiency, noise/dust/waste, and greenhouse gas emission indicators reflecting OSC technical advantages were presented. It can contribute to providing a basis for helping decision-making on the introduction of PC apartment houses using OSC.

Effects of Addition Levels of Coffee and Green Tea By-products Extract including Polyphenols on in vitro Rumen Fermentation and Methane Emission (폴리페놀을 다량 함유한 커피박 및 녹차박 추출물의 수준별 첨가가 반추위 발효 및 메탄 발생량에 미치는 영향)

  • Won, Miyoung;Ryu, Chae-Hwa;Bak, Hyeryeon;Chae, Byungho;Jang, Seung-Ho;Choi, Seung-Shin;Choi, Bong-Hwan;Lee, Sung-Soo;Lee, Jinwook;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.613-623
    • /
    • 2021
  • This study was conducted to investigate the effect of addition levels of coffee and green tea by products extract including polyphenols through hot water extraction on rumen fermentation. The treatment groups consisted of coffee extract (CO), green tea extract (GR) and mixed extract (MIX), and the addition level was 10 µL, 20 µL and 30 µL of three levels. The experiment consisted of a total of 10 experimental groups including the control group, and a full factorial design was used. The effect of polyphenol addition in coffee and green tea by-products was analyzed through main and interaction effect of statistical analysis. The total polyphenol content of the extracts was 106.15, 79.10 and 185.25 ㎍ GAE/g DM for coffee by-product, green tea by-product and mixture, respectively. Total gas production was significantly lower in the treatment groups than in the control (114.00 mL/gDM) (p<0.05). Methane emission tended to decrease as the polyphenol addition level increased. Moreover, the MIX showed the lowest methane emission when 30 µL was added (p<0.05). Volatile fatty acids showed a significant difference compared to the treatment group as a control (98.06 mM) (p<0.05), but there was no change according to the level of polyphenols. As a result of the main effect and interaction, it is thought that the effect on methane reduction and improvement of rumen fermentation in MIX20 can be expected. In a series of studies, the addition of 20 µL of a blended extract of coffee and green tea by-products is thought to reduce methane to levels that do not inhibit rumen fermentation.

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

Establishment of Hysterectomy for Gnotobiotic Pig Production (무균돼지 생산을 위한 자궁적출술 확립)

  • Nho, W.G.;Lee, J.H.;Kim, W.Y.;Yeo, J.M.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • Gnotobiotic piglets were routinely produced by hysterectomy. In this study, 22 pregnant miniature pigs (111th to 113th day of gestation) were used for hysterectomy. Before surgery, 14 pigs were insensibilizated by Ketamine 50® plus CO2 gas and 8 pigs by a slaughter pistol. The high level of Ketamine 50® (0.09㎖/kg) was faster (146 vs 283 seconds) in surgery but the time taken for complete revival of one piglet was more prolonged (427 vs 64 seconds) than 0.03㎖/kg level. In hysterectomies with a slaughter pistol, surgery time was faster (470 vs 155 seconds) and the rate of alive piglets was higher (97.0 vs 83.8%) than in those with Ketamine 50®. There were no problems in the rate of alive newborn piglets even when sows were hysterectomized at 3 days prepartum.

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

Explosion Likelihood Investigation of Facility Using CVD Equipment Using SEMI S6 (SEMI S6를 적용한 CVD 설비의 폭발분위기 조성 가능성 분석)

  • Mi Jeong Lee;Dae Won Seo;Seong Hee Lee;Dong Geon Lee;Se Jong Bae;Jong-Bae Baek
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.62-67
    • /
    • 2023
  • Due to the prolonged impact of COVID-19, the demand for Information Technology (IT) products is increasing, and their production facilities are expanded. Consequently, the use of harmful and dangerous chemicals are increased, the risk of fire(s) and explosion(s) is also elevated. In order to mitigate these risks, the government sets standards, such as KS C IEC 60079-10-1, and manages explosion-prone hazardous facilities where flammable substances are manufactured, used, and handled. However, using the standards of KS, it is difficult to predict the actual possibility of an explosion in a facility, because ventilation (an important factor) is not considered when setting up a hazardous work environment. In this study, the SEMI S6, Tracer Gas Test was applied to the chemical vapor deposition (CVD) facility, a major part of the display industry, to evaluate ventilation performance and to confirm the possibility of creating a less explosive environment. Based on the results, it was confirmed that the ventilation performance in the assumed scenarios met the standards stipulated in SEMI S6, along with supporting the possibility of creating a less explosive working condition. Therefore, it is recommended to use the prediction tool using engineering techniques, as well as KS standards, in such hazardous environments to prevent accidents and/or reduce economic burden following accidents.

Life Cycle Assessment (LCA) of the Wind Turbine : A case study of Korea Yeongdeok Wind Farm (한국 영덕 풍력단지 사례 연구를 통한 풍력 발전의 환경 영향 평가)

  • Jun Heon Lee;Jun Hyung Ryu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.142-154
    • /
    • 2023
  • As the importance of the environment has been recognized worldwide, the need to calculate and reduce carbon emissions has been drawing an increasing attention throughout various industrial sections. Thereby the discipline of LCA (Life Cycle Assessment) involving raw material preparation, production processes, transportation and installation has been established. There is a clear research gap between the need and the practice for Korean Case of renewable energy industry, particularly wind power. To bridge the gap, this study conducted LCA research on wind power generation in the Korean area of Yeongdeok, an example of a domestic onshor wind power complex using SimaPro, which is the most widely used LCA system. As a result of the study, the energy recovery period (EPT) of one wind turbine is about 10 months, and the GHG emitted to generate power of 1 kwh is 15 g CO2/kWh, which is competitive compared to other energy sources. In the environmental impact assessment by component, the results showed that the tower of wind turbines had the greatest impact on various environmental impact sectors. The experience gained in this study can be further used in strengthening the introduction of renewable energy and reducing the carbon emission in line with reducing climate change.