• Title/Summary/Keyword: Gas gun system

Search Result 124, Processing Time 0.022 seconds

Experimental Study on the Emission Characteristics of Diesel, GTL, and their Blends with Biodiesel in a Diesel Engine (디젤엔진에서 디젤, GTL, 바이오디젤의 혼합유의 배기배출물 특성에 관한 실험적 연구)

  • Lee, Yong-Gyu;Moon, Gun-Feel;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.140-146
    • /
    • 2010
  • An experimental study was carried out to investigate the emission characteristics for various alternative fuels in a 2.0 liter 4-cylinder turbo-charged diesel engine. The conventional diesel fuel, neat GTL (Gas to Liquid), blends of diesel and biodiesel(BD20), and blends of GTL and biodiesel(G+BD20 and G+BD40) were applied, and their emission characteristics were compared at various steady-state engine operating conditions. A noticeable reduction of exhaust emissions compared to conventional diesel fuel, except for NOx emission, was observed for G+BD40, where there is a maximum 30% averaged reduction for gaseous emissions (THC and CO) and 70% for PM mass concentrations. When comparing PM size distributions for biodiesel blended fuels, the PM number concentration in accumulation mode, where the diameter of PM is greater than 50 nm, decreased due to additional oxygen content in the biodiesel fuel; in nucleation mode, where the diameter of PM is less than 50nm, there was a slight increase or decrease in the PM number concentration depending on the amount of oxygen available in the combustion chamber.

Fuel Qualities of Different Biodiesels in the Gun Type Burner (바이오디젤의 난방유로서의 연료특성)

  • Kim, Y.J.;Kang, Y.K.;Kang, K.C.;Ryou, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.124-129
    • /
    • 2008
  • In this study, fuel qualities including kinematic viscosity and pour point in the various temperature, calorific value and combustion characteristics of two biodiesels based on the soybean and waste oil blended with light oil were investigated and discussed in order to figure out to confirm fuel compatibility taking the place of light oil in the hot air heater or boiler. As biodiesel content ratio increased calorific value of biodiesel decreased, and the difference was 13% between 100%-biodiesel and light oil. In general, pour points of the biodiesels were higher than light oil, and as biodiesel content ratio increased pour point increased. About 15 cSt was the pour point of biodiesels and light oil, which occurred at 3 to $4^{\circ}C$ in the biodiesels and $-25^{\circ}C$ in the light oil. Flame dimensions of biodiesels and light oil were almost same at the same combustion condition in the burner of the hot air heater. CO concentrations in the exhaustion gas were far lower than those of the light oil. Though pour point of biodiesel is a little inferior to light oil, still biodiesel can be an alternative fuel substituting for light oil in combustion system without much modifying the current oil combustion mechanism.

Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method (PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Son, Sang-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

Study of a Photovoltaic System as an Emergency Power Supply for Offshore Plant Facilities (해양플랜트 설비의 비상전원공급을 위한 태양광 발전시스템 연구)

  • Choi, Gun Hwan;Lee, Byung Ho;Jung, Rho-Taek;Shin, Kyubo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The use of eco-friendly energy in the offshore plant system is expanding because conventional generators are operated by fossil fuel or natural gas. Eco-friendly energy, which replaces existing power generation methods, should be capable of generating the power for lighting protection equipment, airborne fault indication, parameter measurement, and others. Most of the eco-friendly energy used in offshore plant facilities is solar and wind power. In the case of using photovoltaic power, because the structure must be constructed based as flat solar panels, it can be damaged easily by the wind. Therefore, there is a need for a new generation system composed of a spherical structure that does not require a separate structure and is less influenced by the wind. Considering these characteristics, in this study we designed, fabricated, and tested a unit that could provide the most efficient spherical photovoltaic power generation considering wind direction and wind pressure. Our test results indicated that the proposed system reduced costs because it did not require any separate structure, used eco-friendly energy, reduced carbon dioxide emissions, and expanded the proportion of eco-friendly energy use by offshore plant facilities.

Photoelectric Conversion Efficiency of DSSC According to Plasma Surface Treatment of Conductive Substrate (전도성 기판의 플라즈마 처리에 따른 염료감응형 태양전지 광전변환 효율 특성 변화)

  • Ki, Hyun-Chul;Kim, Seon-Hoon;Kim, Doo-Gun;Kim, Tae-Un;Hong, Kyung-Jin;So, Soon-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.902-905
    • /
    • 2012
  • This study is explore the photoelectric conversion change of dye-sensitized solar cells with surface treatment of the conductive substrate. gases of FTO surface treatment were $N_2$, and $O_2$. Treatment conditions of surface were gas flux from 25 sccm to 50 sccm and RF power were from 25 W to 50 W. Treatment time and pressure were fixed 5 min and 100 mtoor. The best sheet resistance and surface roughness were obtained by $O_2$ 50 sccm and 50 W and that result were 7.643 ${\Omega}/cm^2$ and 17.113 nm, respectively. The best efficiency result was obtained by $O_2$ 50 sccm and 50 W and that result of Voc, Jsc, FF and efficiency were 7.03 V, 14.88 $mA/cm^2$, 63.75% and 6.67%, respectively.

Development and Evaluation of Artificial Lightweight Soil Using Bottom Ash (바텀애시를 활용한 인공경량토양의 개발 및 성능 평가)

  • Kim, Chul-Min;Kim, Min-Woo;Cho, Gun-Young;Choi, Na-Rae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.252-258
    • /
    • 2018
  • A larger energy consumption and concentration of population induced green house gas glowing and heat island effect in the urban space. Roof green system was a effect method to reduce green house gas and heat concentration in the city. Therefore, construction of this system was increasing. Most of lightweight soil used in roof green system was perlite, but this caused dust and skin disease. So it needed to develop another new lightweight soli for roof green system. Meanwhile, a thermoelectric power plant generated bottom ash as a by-product. According to previous research, bottom ash could be used for artificial lightweight soil with 60 wt% of mixing rate. But this study was proceed to develop a artificial lightweight soil using bottom ash with higher mixing rate by 65 wt% and different organic ingredients. First, physical and chemical properties of bottom ash was investigated. Then test according to landscaping design standard was proceeded for various artificial lightweight soil mix types using bottom ash, bark, compost and coco peat. As a result, the artificial lightweight soil with 65% of bottom ash, 30% of bark and 5% of compost was suitable for low and middle range of soil standard.

Development of the First LNG Bunkering Barge System in Korea (한국 최초의 LNG벙커링 바지시스템 개발)

  • Jung, Dong-Ho;Oh, Seung-Hoon;Jung, Jae-Hwan;Hwang, Sung-Chul;Sung, Hong-Gun;Lee, Jae-Ik;Kim, Eun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.162-163
    • /
    • 2018
  • This study introduces the R&D project of development of the 1st LNG bunkering barge in Korea. The Design and pilot test of Barge-To-Ship 500cbm LNG bunkering barge system for coastal trading LNG-fueled ship is proposed. The following technologies will be developed from the project ; Basic/Detail design and pilot test of LNG Bunkering barge system, Basic/Detail design and pilot test of LNG bunkering process system considering LNG loading/unloading, Basic/Detail design and pilot test of 500cbm LNG tank in type-C, Evaluation of bunkering performance according to conditions (environment, SIMOPs) by numerical simulation, Performance evaluation of bunkering barge, towed barge and Barge-To-Ship motion considering ocean environment load, and scenario in Barge-To-Ship LNG bunkering. This project will contribute expansion to LNG-fueled ship industry and pave the way to establish LNG bunkering hub port.

  • PDF

Numerical and experimental investigation on the global performance of a novel design of a Low Motion FPSO

  • Peng, Cheng;Mansour, Alaa M.;Wu, Chunfa;Zuccolo, Ricardo;Ji, Chunqun;Greiner, Bill;Sung, Hong Gun
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.427-439
    • /
    • 2018
  • Floating Production Storage and Offloading (FPSO) units have the advantages of their ability to provide storage and offloading capabilities which are not available in other types of floating production systems. In addition, FPSOs also provide a large deck area and substantial topsides payload capacity. They are in use in a variety of water depths and environments around the world. It is a good solution for offshore oil and gas development in fields where there is lack of an export pipeline system to shore. However due to their inherently high motions in waves, they are limited in the types of risers they can host. The Low Motion FPSO (LM-FPSO) is a novel design that is developed to maintain the advantages of the conventional FPSOs while offering significantly lower motion responses. The LM-FPSO design generally consists of a box-shape hull with large storage capacity, a free-hanging solid ballast tank (SBT) located certain distance below the hull keel, a few groups of tendons arranged to connect the SBT to the hull, a mooring system for station keeping, and a riser system. The addition of SBT to the floater results in a significant increase in heave, roll and pitch natural periods, mainly through the mass and added mass of the SBT, which significantly reduces motions in the wave frequency range. Model tests were performed at the Korea Research Institute of Ships & Ocean Engineering (KRISO) in the fall of 2016. An analytical model of the basin model (MOM) was created in Orcaflex and calibrated against the basin-model. Good agreement is achieved between global performance results from MOM's predictions and basin model measurements. The model test measurements have further verified the superior motion response of LM-FPSO. In this paper, numerical results are presented to demonstrate the comparison and correlation of the MOM results with model test measurements. The verification of the superior motion response through model test measurements is also presented in this paper.