• Title/Summary/Keyword: Gas Plant

Search Result 1,862, Processing Time 0.029 seconds

Identification of Marker Compounds for Discriminating between Embryogenic and Nonembryogenic Calluses of Higher Plants Using Pyrolysis Gas Chromatography Mass Spectrometry and Genetic Programming

  • Kim Suk-Weon;Ban Sung-Hee;Yoo Ook-Joon;Liu Jang-Ryol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.38-42
    • /
    • 2006
  • When whole cells are subjected to pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) analysis, it provides biochemical profiles containing overlapping signals of the majority of compounds. To determine marker compounds that discriminate embryogenic calluses from nonembryogenic calluses, samples of embryogenic and nonembryogenic calluses of five higher plant species were subjected to Py-GC/MS. Genetic programming of Py-GC/MS data was able to discriminate embryogenic calluses from nonembryogenic calluses. The content ratio of 5-meyhyl-2-furancarboxaldehyde and 5-(hydroxymethyl)-2-furancarboxaldehyde was greater in nonembryogenic calluses than in embryogenic calluses. However, the content ratio of phenol, p-cresol, and $^1H-indole$ in embryogenic calluses was 1.2 to 2.4 times greater than the ratio in nonembryogenic calluses. These pyrolysates seem to be derived from the components of the cell walls, which suggests that differences in cell wall components or changes in the architecture of the cell wall playa crucial role in determining the embryogenic competence of calluses.

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

Third Wave of Gas Management System in LNG Carrier - VaCo System (LNG 운반선에서의 신개념 증발 가스 처리 시스템 - VaCo 시스템)

  • Choi, Jung-Ho;Yoo, Hong-Sung;Yoo, Kyung-Nam;Heo, An;Lee, Dou-Yeong;Lyy, Sung-Kak
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.89-93
    • /
    • 2007
  • The Boil-off gas (BOG) generation during the voyage is inevitable since Natural Gas (NG) in normally liquefied below -160 degree C in atmosphere condition and small heat ingress due to relatively hot outside keeps evaporating continuously. The one of major issue in LNG carriers is to handle generated BOG from cargo tank. The generated BOG affects to increase the cargo tank pressure and Gas Management System (GMS) for LNG carriers is closely related to cargo tank pressure maintenance. Economically, BOG is generally used as fuel in LNG carrier. Newly developed GMS for LNG carrier in boiler propulsion system, VaCo System, not only accomplish automatic control in GMS but also ensure safer operation.

  • PDF

Case Studies for SMR Natural Gas Liquefaction Plant by Capacity in Small Scale Gas Wells through Cost Analysis (소규모 가스전 규모에 따른 SMR 천연가스 액화 플랜트 용량별 비용 분석 사례연구)

  • Lee, Inkyu;Cho, Seungsik;Lee, Seungjun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.46-51
    • /
    • 2016
  • Natural gas liquefaction process which spends a huge amount energy is operated under cryogenic conditions. Thus, many researchers have studied on minimizing energy consumption of LNG plant. However, a few studied for cost optimization have performed. This study focused on the cost analysis for the single mixed refrigerant (SMR) process, one of the simplest natural gas liquefaction process, which has different capacity. The process capacity is increased from 1 million ton per annum (MTPA) to 2.5 MTPA by 0.5 MTPA steps. According to the increase of plant size, only flow rate of natural gas and mixed refrigerant are increased and other operating conditions are fixed. Aspen Economic Evaluator(v.8.7) is used for the cost analysis and six tenths factor rule is applied to obtain multi stream heat exchanger cost data which is not supplied by Aspen Economic Evaluator. Moreover, the optimal plant sizes for different sizes of gas wells are found as the result of applying plant cost to small scale gas wells, 20 million ton (MT), 40 MT, and 80 MT. Through this cost analysis, the foundation is built to optimize LNG plant in terms of the cost.

Stress Analysis of Gas-Gas Heater in Thermal Power Plant (화력발전용 가스재열기의 응력 해석)

  • Hwang, Suk-Hwan;Choi, Jae-Seung;Lee, Hoo-Gwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.204-211
    • /
    • 2002
  • Today\`s industrialized plants are required to reduce SOx emitted from stacks at factories, utility power stations, etc. For this purpose, flue gas desulfurization(FGD) system is installed in thermal power plant and gas-gas heater(GGH) is used to play a vital role to reheat the wet treated gas from FGD. The sector plates are located at cold and hot sides of gas-gas heater. They serve as sealing to prevent mixing treated and untreated gases. Therefore, the deformation of the sector plate due to its dead weight and gas pressure should be considered as major factor for the sector plate design. And finite element analysis(FEA) for rotor part in GGH is performed with original model and two weight-reduced models with different diaphragm thickness, respectively. Stress concentrations at rotor diaphragm happen due to the dead weight, pressure difference between treated and untreated gas, and thermal distribution in the rotor. As the thickness of diaphragm is decreased, the stress level is increased. The direction of treated gas and untreated gas flow may affect the stress level.

Structural Integrity Evaluation by System Stress Analysis for Fuel Piping in a Process Plant (공정플랜트 연료배관의 시스템응력 해석에 의한 구조 건전성 평가)

  • Jeong, Seong Yong;Yoon, Kee Bong;Duyet, Pham Van;Yu, Jong Min;Kim, Ji Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2013
  • Process gas piping is one of the most basic components frequently used in the refinery and petrochemical plants. Many kinds of by-product gas have been used as fuel in the process plants. In some plants, natural gas is additionally introduced and mixed with the byproduct gas for upgrading the fuel. In this case, safety or design margin of the changed piping system of the plant should be re-evaluated based on a proper design code such as ASME or API codes since internal pressure, temperature and gas compositions are different from the original plant design conditions. In this study, series of piping stress analysis were conducted for a process piping used for transporting the mixed gas of the by-product gas and the natural gas from a mixing drum to a knock-out drum in a refinery plant. The analysed piping section had been actually installed in a domestic industry and needed safety audit since the design condition was changed. Pipe locations of the maximum system stress and displacement were determined, which can be candidate inspection and safety monitoring points during the upcoming operation period. For studying the effects of outside air temperature to safety the additional stress analysis were conducted for various temperatures in $0{\sim}30^{\circ}C$. Effects of the friction coefficient between the pipe and support were also investigated showing a proper choice if the friction coefficient is important. The maximum system stresses were occurred mainly at elbow, tee and support locations, which shows the thermal load contributes considerably to the system stress rather than the internal pressure or the gravity loads.

A dual Pressure, Steam Injection Combined cycle Power Plant Performance Analysis (2압, 증기분사 복합발전 사이클에 대한 성능해석)

  • Kim, Su-Yong;Son, Ho-Jae;Park, Mu-Ryong;Yun, Ui-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.75-86
    • /
    • 1997
  • Combined cycle power plant is a system where a gas turbine or steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. Combined cycle plant is a one from of cogeneration. The temperature of the exhaust gases from a gas turbine ranges from $400^\circC$ to $600^\circC$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a "topping(gas turbine)" and a "bottoming(steam turbine)" cycle. The first cycle, to which most of the heat is supplied, is called the topping cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level and is therefore referred to as a "bottoming cycle". The combination of gas/steam turbine power plant managed to be accepted widely because, first, each individual system has already proven themselves in power plants with a single cycle, therefore, the development costs are low. Secondly, the air as a working medium is relatively non-problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^\circC$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It, therefore, is quite reasonable to use the steam process for the bottoming cycle. Only recently gas turbines attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a dual pressure combined-cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance.

  • PDF

A Study of Interactive Training Methods for the Safe Operation of City Gas Governor (도시가스 정압기 안전운영을 위한 인터랙티브 훈련 방안 연구)

  • Kim, Hyoung Jean;Park, Chan Cook;Lee, Jae Yong;Lee, Chun Sik;Yu, Chul Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • We developed the safety training methods which improve the current methods by overcoming the single scenario-based one-way communication between trainee and training system. We improved the design and implementation of the safety training scenarios, which is one of the most important components of the plant safety training system for safe operation of the city gas governor. The diversity and training effects of the training scenarios can be improved by interactive training between the plant safety training system and operators. The interactive training methods were developed based on Finite State Machine model which is applicable to and based on plant safety training platform. We could see the possibility of applying this method of safety training scenario system to other domain of plant safety training system.

Proposal of Construction Method of VR-based Safety Training System According to Plant Characteristics (플랜트 특성에 따른 VR기반 안전훈련 시스템 구축 방법 제시)

  • Lee, Jae Yong;Park, Chan Cook
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.44-51
    • /
    • 2019
  • The system components and implementation methods to be considered when constructing a system for plant safety training in a virtual environment were classified according to plant characteristics. When constructing a safety training system based on VR, the necessary components may be different according to the characteristics of the plant, and the basic system components to be built according to the target plant are presented. In order to support the proposed system, we implemented a city gas governor safety training system, which is a relatively simple facility. Through this, we propose guidelines for the construction of a suitable VR-based plant safety training system in the plant to be applied.

Operation Characteristics of Gasification/Melting Pilot Plants for Synthesis Gas Production using Coal and Waste (석탄 및 폐기물로부터 합성가스 제조를 위한 가스화용융 Pilot Plant 운전특성)

  • Chung, Seok-Woo;Yun, Yong-Seung;Yoo, Young-Don
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.561-564
    • /
    • 2005
  • Gasification has been regarded as a very important technology to decrease environmental pollution and to obtain higher efficiency. The gasification process converts carbon containing feedstock into a synthesis gas, composed primarily of CO and $H_2$. And the synthesis gas can be used as a source for power generation or chemical material production. Through more than nine years, IAE developed and upgraded several gasification/melting pilot plant system, and obtained a good quality synthesis gas. This paper illustrates the gasification characteristics and operation results of two 3 ton/day synthesis gas production facilities. One is entrained-bed slagging type coal gasifier system which is normally operated in the temperature range of $1,400\~1,450^{\circ}C,\;8\~10$ bar pressure. And the other is fixed-bed type gasification/melting furnace system using MSW and industrial wastes as a feedstock.

  • PDF