Identification of Marker Compounds for Discriminating between Embryogenic and Nonembryogenic Calluses of Higher Plants Using Pyrolysis Gas Chromatography Mass Spectrometry and Genetic Programming

  • Kim Suk-Weon (Laboratory of Plant Cell Biotechnology and Laboratory of Plant Genomics Services, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ban Sung-Hee (Laboratory of Plant Cell Biotechnology and Laboratory of Plant Genomics Services, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yoo Ook-Joon (Department of Biological Science, Korea Advanced Institute of Science and Technology) ;
  • Liu Jang-Ryol (Laboratory of Plant Cell Biotechnology and Laboratory of Plant Genomics Services, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2006.01.01

Abstract

When whole cells are subjected to pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) analysis, it provides biochemical profiles containing overlapping signals of the majority of compounds. To determine marker compounds that discriminate embryogenic calluses from nonembryogenic calluses, samples of embryogenic and nonembryogenic calluses of five higher plant species were subjected to Py-GC/MS. Genetic programming of Py-GC/MS data was able to discriminate embryogenic calluses from nonembryogenic calluses. The content ratio of 5-meyhyl-2-furancarboxaldehyde and 5-(hydroxymethyl)-2-furancarboxaldehyde was greater in nonembryogenic calluses than in embryogenic calluses. However, the content ratio of phenol, p-cresol, and $^1H-indole$ in embryogenic calluses was 1.2 to 2.4 times greater than the ratio in nonembryogenic calluses. These pyrolysates seem to be derived from the components of the cell walls, which suggests that differences in cell wall components or changes in the architecture of the cell wall playa crucial role in determining the embryogenic competence of calluses.

Keywords

References

  1. Komamine, A., R. Kawahara, M. Matsumoto, S. Sunabori, T. Toya, A. Fujiwara, M. Tsukahara, J. Smith, M. Ito, H. Fukuda, K. Nomura, and T. Fujimura (1991) Mechanism of somatic embryogenesis in cell cultures: Physiology, biochemistry and molecular biology. In Vitro Cell. Dev. Biol. 28: 11-14 https://doi.org/10.1007/BF02631074
  2. Bajaj, S. and M. V. Rajam (1996) Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice (Restoration of plant regeneration by manipulation of cellular polyamine levels). Plant Physiol. 112: 1343-1348 https://doi.org/10.1104/pp.112.3.1343
  3. Saare-Surminski, K., W. Preil, J. P. Knox, and R. Lieberei (2000) Arabinogalactan proteins in embryogenic and non-embryogenic callus cultures of Euphorbia pulcherrima. Physiol. Plant. 108: 180-187 https://doi.org/10.1034/j.1399-3054.2000.108002180.x
  4. Hahne, G. and H. Lorz (1988) Embryogenic and callus specific proteins in somatic embryogenesis of the grass, Dactylis glomerata. Plant Sci. 55: 267-279 https://doi.org/10.1016/0168-9452(88)90070-2
  5. Kim, S. W. and J. R. Liu (1999) Somatic embryogenesis and plant regeneration in zygotic embryo cultures of balloon flower. Plant Cell Tissue Organ Cult. 58: 227-230 https://doi.org/10.1023/A:1006338024745
  6. Kim, S. W., D. S. In, P. S. Choi, and J. R. Liu (2004) Plant regeneration from immature zygotic embryoderived embryogenic calluses and cell suspension cultures of Catharanthus roseus. Plant Cell Tissue Organ Cult. 76: 131-135 https://doi.org/10.1023/A:1025895731017
  7. Kim, S. W., M. K. Park, and J. R. Liu (1996) High frequency plant regeneration via somatic embryogenesis in cell suspension cultures of coriander (Coriandrum sativum L.). Plant Cell Rep. 15: 751-753 https://doi.org/10.1007/BF00232221
  8. Lee, H. S., S. W. Kim, K. W. Lee, and J. R. Liu (1993) Plant regeneration from transformed somatic embryoderived protoplasts in Korean sinseng (Panax ginseng) and the mitotic stability of the transgene through ontogeny. Kor. J. Plant Tiss. Cult. 20: 345-350
  9. Murashige, T. and F. Skoog (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  10. Banzhaf, W., P. Nordin, R. Keller, and F. Francone (1998) Genetic Programming - An Introduction. Academic Press, San Francisco, CA, USA
  11. Jansen, M. A. K., R. E. van den Noort, M. Y. A. Tan, E. Prinsen, L. M. Lagrimini, and R. N. F. Thorneley (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 126: 1012-1023 https://doi.org/10.1104/pp.126.3.1012
  12. Morrison, W. H. and D. D. Archibald (1998) Analysis of graded flax fiber and yarn by pyrolysis mass spectrometry and pyrolysis gas chromatography mass spectrometry. J. Agric. Food Chem. 46: 1870-1876 https://doi.org/10.1021/jf970933n
  13. Fry, S. C. (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol. 37: 165-186 https://doi.org/10.1146/annurev.pp.37.060186.001121
  14. Kawaoka, A., E. Matsunaga, S. Endo, S. Kondo, K. Yoshida, A. Shinmyo, and H. Ebinuma (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol. 132: 1177-1185 https://doi.org/10.1104/pp.102.019794
  15. Alemanno, L., T. Ramos, A. Gargadenec, C. Andary, and N. Ferriere (2003) Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann. Bot. 92: 613-623 https://doi.org/10.1093/aob/mcg177
  16. Hrubcova, M., M. Cvikrova, and J. Eder (1994) Peroxidase activities and contents of phenolic acids in embryogenic and nonembryogenic alfalfa cell suspension cultures. Biol. Plant. 36: 175-182 https://doi.org/10.1007/BF02921083
  17. Cho, J. S., J. Y. Kim, I. H. Kim, and D. I. Kim (2003) Effects of polysaccharide elicitors on the production of decursinol angelate in Angelica gigas Nakai root cultures. Biotechnol. Bioprocess Eng. 8: 158-161 https://doi.org/10.1007/BF02940273
  18. Park, Y. G., S. J. Kim, H. Y. Jung, Y. M. Kang, S. M. Kang, D. T. Prasad, S. W. Kim, and M. S. Choi (2004) Variation of ginkgolides and bilobalide contents in leaves and cell cultures of Ginkgo biloba L. Biotechnol. Bioprocess Eng. 9: 35-40 https://doi.org/10.1007/BF02949319
  19. Park, Y. G., S. J. Kim, Y. M. Kang, H. Y. Jung, D. T. Prasad, S. W. Kim, Y. G. Chung, and M. S. Choi (2004) Production of ginkgolides and bilobalide from optimized the Ginkgo biloba cell culture. Biotechnol. Bioprocess Eng. 9: 41-46 https://doi.org/10.1007/BF02949320