Browse > Article

Identification of Marker Compounds for Discriminating between Embryogenic and Nonembryogenic Calluses of Higher Plants Using Pyrolysis Gas Chromatography Mass Spectrometry and Genetic Programming  

Kim Suk-Weon (Laboratory of Plant Cell Biotechnology and Laboratory of Plant Genomics Services, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ban Sung-Hee (Laboratory of Plant Cell Biotechnology and Laboratory of Plant Genomics Services, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Yoo Ook-Joon (Department of Biological Science, Korea Advanced Institute of Science and Technology)
Liu Jang-Ryol (Laboratory of Plant Cell Biotechnology and Laboratory of Plant Genomics Services, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.1, 2006 , pp. 38-42 More about this Journal
Abstract
When whole cells are subjected to pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) analysis, it provides biochemical profiles containing overlapping signals of the majority of compounds. To determine marker compounds that discriminate embryogenic calluses from nonembryogenic calluses, samples of embryogenic and nonembryogenic calluses of five higher plant species were subjected to Py-GC/MS. Genetic programming of Py-GC/MS data was able to discriminate embryogenic calluses from nonembryogenic calluses. The content ratio of 5-meyhyl-2-furancarboxaldehyde and 5-(hydroxymethyl)-2-furancarboxaldehyde was greater in nonembryogenic calluses than in embryogenic calluses. However, the content ratio of phenol, p-cresol, and $^1H-indole$ in embryogenic calluses was 1.2 to 2.4 times greater than the ratio in nonembryogenic calluses. These pyrolysates seem to be derived from the components of the cell walls, which suggests that differences in cell wall components or changes in the architecture of the cell wall playa crucial role in determining the embryogenic competence of calluses.
Keywords
genetic programming; marker; plant calluses; pyrolysis gas chromatography mass spectrometry (Py-GC/MS);
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Saare-Surminski, K., W. Preil, J. P. Knox, and R. Lieberei (2000) Arabinogalactan proteins in embryogenic and non-embryogenic callus cultures of Euphorbia pulcherrima. Physiol. Plant. 108: 180-187   DOI   ScienceOn
2 Hahne, G. and H. Lorz (1988) Embryogenic and callus specific proteins in somatic embryogenesis of the grass, Dactylis glomerata. Plant Sci. 55: 267-279   DOI   ScienceOn
3 Banzhaf, W., P. Nordin, R. Keller, and F. Francone (1998) Genetic Programming - An Introduction. Academic Press, San Francisco, CA, USA
4 Jansen, M. A. K., R. E. van den Noort, M. Y. A. Tan, E. Prinsen, L. M. Lagrimini, and R. N. F. Thorneley (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 126: 1012-1023   DOI
5 Komamine, A., R. Kawahara, M. Matsumoto, S. Sunabori, T. Toya, A. Fujiwara, M. Tsukahara, J. Smith, M. Ito, H. Fukuda, K. Nomura, and T. Fujimura (1991) Mechanism of somatic embryogenesis in cell cultures: Physiology, biochemistry and molecular biology. In Vitro Cell. Dev. Biol. 28: 11-14   DOI
6 Alemanno, L., T. Ramos, A. Gargadenec, C. Andary, and N. Ferriere (2003) Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann. Bot. 92: 613-623   DOI   ScienceOn
7 Kim, S. W. and J. R. Liu (1999) Somatic embryogenesis and plant regeneration in zygotic embryo cultures of balloon flower. Plant Cell Tissue Organ Cult. 58: 227-230   DOI
8 Kim, S. W., D. S. In, P. S. Choi, and J. R. Liu (2004) Plant regeneration from immature zygotic embryoderived embryogenic calluses and cell suspension cultures of Catharanthus roseus. Plant Cell Tissue Organ Cult. 76: 131-135   DOI   ScienceOn
9 Park, Y. G., S. J. Kim, Y. M. Kang, H. Y. Jung, D. T. Prasad, S. W. Kim, Y. G. Chung, and M. S. Choi (2004) Production of ginkgolides and bilobalide from optimized the Ginkgo biloba cell culture. Biotechnol. Bioprocess Eng. 9: 41-46   DOI   ScienceOn
10 Kawaoka, A., E. Matsunaga, S. Endo, S. Kondo, K. Yoshida, A. Shinmyo, and H. Ebinuma (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol. 132: 1177-1185   DOI
11 Kim, S. W., M. K. Park, and J. R. Liu (1996) High frequency plant regeneration via somatic embryogenesis in cell suspension cultures of coriander (Coriandrum sativum L.). Plant Cell Rep. 15: 751-753   DOI   ScienceOn
12 Lee, H. S., S. W. Kim, K. W. Lee, and J. R. Liu (1993) Plant regeneration from transformed somatic embryoderived protoplasts in Korean sinseng (Panax ginseng) and the mitotic stability of the transgene through ontogeny. Kor. J. Plant Tiss. Cult. 20: 345-350
13 Morrison, W. H. and D. D. Archibald (1998) Analysis of graded flax fiber and yarn by pyrolysis mass spectrometry and pyrolysis gas chromatography mass spectrometry. J. Agric. Food Chem. 46: 1870-1876   DOI   ScienceOn
14 Park, Y. G., S. J. Kim, H. Y. Jung, Y. M. Kang, S. M. Kang, D. T. Prasad, S. W. Kim, and M. S. Choi (2004) Variation of ginkgolides and bilobalide contents in leaves and cell cultures of Ginkgo biloba L. Biotechnol. Bioprocess Eng. 9: 35-40   DOI   ScienceOn
15 Fry, S. C. (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol. 37: 165-186   DOI
16 Cho, J. S., J. Y. Kim, I. H. Kim, and D. I. Kim (2003) Effects of polysaccharide elicitors on the production of decursinol angelate in Angelica gigas Nakai root cultures. Biotechnol. Bioprocess Eng. 8: 158-161   DOI   ScienceOn
17 Murashige, T. and F. Skoog (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497   DOI
18 Bajaj, S. and M. V. Rajam (1996) Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice (Restoration of plant regeneration by manipulation of cellular polyamine levels). Plant Physiol. 112: 1343-1348   DOI
19 Hrubcova, M., M. Cvikrova, and J. Eder (1994) Peroxidase activities and contents of phenolic acids in embryogenic and nonembryogenic alfalfa cell suspension cultures. Biol. Plant. 36: 175-182   DOI