• Title/Summary/Keyword: Gap junction

Search Result 171, Processing Time 0.031 seconds

Physics and current density-voltage characteristics of $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells ($a-Si_{1-x}Ge_x:H$ 화합물(化合物) p-i-n 태양전지(太陽電池)의 물리(物理) 및 전류밀도(電流密度)-전압(電壓) 특성(特性))

  • Kwon, Young-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1435-1438
    • /
    • 1994
  • The effects of Ge composition variation in $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells on the physical properties and current density-voltage characteristics are analyzed by a new simulation modelling based on the update published experimental datas. The simulation modelling includes newly formulated density of gap density spectrum corresponding to Ge composition variation and utilizes the newly derived generation rate formulars which include the reflection coefficients and can apply to multijunction structures as well as single junction structure. The effects in $a-Si_{1-x}Ge_x:H$ single junction are analyzed through the efficiency, fill factor, open circuit voltage, short circuit current density, free carriers, trap carriers, electric field, generation rate and recombination rate. Based on the results analyzed in single junction structure, the applications to multiple junction structures are discussed and the optimal conditions reaching to a high performance are investigated.

  • PDF

Electrical Characteristics of $Nb/Al-AlO_x/Nb$ Tunnel Junction fabricated with $I_c$ Values in the Range of $28 A/cm^2~ 940 A/cm^2$ ($28 A/cm^2~ 940 A/cm^2$의 임계전류밀도 범위로 제작된 $Nb/Al-AlO_x/Nb$ 터널접합의 전기적 특성)

  • 홍현권;김규태;박세일;김구현;남두우
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.4-7
    • /
    • 2002
  • Samples of $Nb/Al-AlO_x/Nb$ tunnel junction with the size of $50 ${\mu}{\textrm}{m}$ {\times} 50 ${\mu}{\textrm}{m}$$ were fabricated by using self-aligning and reactive ion etching technique In the high quality samples, the $V_m$ value (the product of the critical current and subgap resistance measured at 2 mV) was 34 mV at the critical current density of $J_c: 500 A/cm^2 and the V_g$ value (the gap voltage) was 2.8 mV. For the higher $J_c$ sample, voltage fluctuation at the gap voltage was observed. The $V_m and J_c$ values for this sample were 8 mV and 900 A/cm$^2$, respectively. Also, the relationship between critical current density $J_c$ and specific normal conductance $G_s$ of the junctions with $J_c$ in the range of 28 A/cm$^2$~940 A/cm$^2$was investigated.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

Current Status of Thin Film Silicon Solar Cells for High Efficiency

  • Shin, Chonghoon;Lee, Youn-Jung;Park, Jinjoo;Kim, Sunbo;Park, Hyeongsik;Kim, Sangho;Jung, Junhee;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.113-121
    • /
    • 2017
  • The researches on the silicon-based thin films are being actively carried out. The silicon-based thin films can be made as amorphous, microcrystalline and mixed phase and it is known that the optical bandgap can be controlled accordingly. They are suitable materials for the fabrication of single junction, tandem and triple junction solar cells. It can be used as a doping layer through the bonding of boron and phosphorus. The carbon and oxygen can bond with silicon to form a wide range of optical gap. Also, The optical gap of hydrogenated amorphous silicon germanium can be lower than that of silicon. By controlling the optical gaps, it is possible to fabricate multi-junction thin film silicon solar cells with high efficiencies which can be promising photovoltaic devices.

Bi-directional Two Terminal Switching Device based on SiGe for Spin Transfer Torque (STT) MRAM

  • Yang, Hyung-Jun;Kil, Gyu-Hyun;Lee, Sung-Hyun;Song, Yun-Heub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.385-385
    • /
    • 2012
  • A two terminal N+/P/N+ junction device to replace the conventional selective transistor was studied as a bilateral switching device for spin transfer torque (STT) MRAM based on 3D device simulation. An N+/P/N+ junction structure with $30{\times}30nm$ area requires bi-directional current flow enough to write a data by a drain induced barrier lowering (DIBL) under a reverse bias at N+/P (or P/N+ junction), and high current on/off ratio of 106. The SiGe materials are widely used in hetero-junction bipolar transistors, bipolar compensation metal-oxide semiconductors (BiCMOS) since the band gap of SiGe materials can be controlled by changing the fraction and the strain epilayers, and the drift mobility is increased with the increasing Ge content. In this work, N+/P/N+ SiGe material based junction provides that drive current is increased from 40 to $130{\mu}A$ by increased Ge content from 10~80%. When Ge content is about 20%, the drive current density of SiGe device substantially increased to 2~3 times better than Si-based junction device in case of 28 nm P length, which is sufficient current to operation of STT-MRAM.

  • PDF

Sucrose-permeability Induced by Reconstituted Connexin32 in Liposomes.

  • Rhee, Senng-Keun;Hong, Eun-Jnng
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 1995
  • Functional study of the gap junction channel has been hindered by its inaccessibility in situ. Identification of forms of this channel in artificial membrane has been elusive because of the lack of identifying channel physiology. Connexin32 forms gap junction channels between neighboring cells in rat liver. Connexin32 was affinity-purified using a monoclonal antibody and reconstituted into artificial phospholipid vesicles. The reconstituted connexin32 formed channels through the vesicle membrane that were permeable to sucrose (Stokes radius: $5{\AA}$). The permeability to sucrose was reversibly reduced by acidic pH. In addition, the pH effect on the permeability to sucrose fit well with by the Hill's equation (where, n=2.7 and pK=6.7).

  • PDF

Antioxidative Activity of Cherry Tomato (Lycopersicon lycopersicum var. cerasiforme) Extracts and Protective Effect for $H_2O_2$-induced Inhibition of Gap Junction Intercellular Communication

  • Kim, Su-Na;Choi, Won-Hee;Ahn, Ji-Yun;Ha, Tae-Youl
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.630-635
    • /
    • 2009
  • This study was performed to analyze various antioxidants, to evaluate the antioxidative activities, and to measure the protective effect for gap junction intercellular communication (GJIC) to assess the functional potency of the cherry tomato. The ascorbic acid, lycopene, and ${\beta}-carotene$ were measured at $503.4{\pm}9.6$, $39.7{\pm}1.5$, and $7.4{\pm}0.3$ mg/100 g d.w., and ${\alpha}-$, ${\beta}+{\gamma}-$, ${\delta}-tocopherol$ contents were measured at $8.3{\pm}0.1$, $1.7{\pm}0.0$, and $0.1{\pm}0.0$ mg/100 g d.w., respectively. Cherry tomato extract using hexane/acetone/EtOH (2:1:1, CTE) exhibited a ABTS radical scavenging activity with an $IC_{50}$ value of $48.83{\pm}0.30\;{\mu}g/mL$. The cherry tomato protected against the inhibition of GJIC induced by $H_2O_2$ in WB-F344 rat liver epithelial cells, and the reduction in phosphorylated Cx43 was most clearly correlated with the concentration of CTE. These results demonstrated that the cherry tomato harbors a wealth of potent antioxidants and might be protect human body against the inhibition of the GJIC by toxic components.

High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

  • Park, Mi-Young;Kim, Min Young;Seo, Young Rok;Kim, Jong-Sang;Sung, Mi-Kyung
    • Journal of Cancer Prevention
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in $Apc^{Min/+}$ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2'-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis.

Analysis of CMTX Mutants Using Connexin Membrane Channels (커넥신 세포막채널을 이용한 씨엠티엑스 돌연변이체의 분석)

  • Cheon, Mi-Saek;Oh, Seung-Hoon
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.764-769
    • /
    • 2008
  • Mutations in the human connexin 32 (Cx32) gene are responsible for X-linked Charcot-Marie-Tooth (CMTX) disease. Although over 300 different mutations have been identified the detailed molecular etiology of CMTX disease is poorly understood. Several studies reported that connexin membrane channels share most biophysical properties with their parental gap junction channels. In this study, two connexin mutant membrane channels (one mutant channel called the M34T channel in which the methionine residue at the $34^{th}$ position of the Cx32 protein is replaced with threonine residue and the other mutant channel called the T86C channel in which the threonine residue at the $86^{th}$ position is replaced with cysteine residue) associated with CMTX mutations were characterized at the single-channel level instead of using mutant gap junction channels. The biophysical properties of the M34T channel were very similar to those of the gap junction channel formed by M34T mutation. In addition, the mutant membrane channel study revealed the reversal of the gating polarity, the loss of fast gating and the gain of slow gating. The T86C channel also behaves like its parental wild type Cx32 membrane channel. Taken together, these results suggest that a study using connexin membrane channels is useful to characterize CMTX mutants.

Single Channel Analysis of Xenopus Connexin 38 Hemichannel (제노푸스 Cx38 세포막채널의 단일채널분석)

  • Cheon, Mi-Saek;Oh, Seung-Hoon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1517-1522
    • /
    • 2007
  • Gap junction channels formed by two adjacent cells allow the passage of small molecules up to ${\sim}\;1\;kDa$ between them. Hemichannel (connexon or half of gap junction) also behaves as a membrane channel like sodium or potassium channels in a single cell membrane. Among 26 types of connexin (Cx), $Cx32^*43E1$ (a chimera in which the first extracellular loop of Cx32 has been replaced with that of Cx43), Cx38, Cx46, and Cx50 form functional hemichannels as well as gap junction channels. Although it is known that Xenopus oocytes express endogenous connexin 38 (Cx38), its biophysical characteristics at single channel level are poorly understood. In this study, we performed single channel recordings from single Xenopus oocytes to acquire the biophysical properties of Cx38 including voltage-dependent gating and permeation (conductance and selectivity). The voltage-dependent fast and slow gatings of Cx38 hemichannel are distinct. Fast gating events occur at positive potentials and their open probabilities are low. In contrast, slow gatings dominate at negative potentials with high open probabilites. Based on hi-ionic experiments, Cx38 hemichannel is anion-selective. It will be interesting to test whether charged amino acid residues in the amino terminus of Cx38 are responsible for voltage gatings and permeation.