Antioxidative Activity of Cherry Tomato (Lycopersicon lycopersicum var. cerasiforme) Extracts and Protective Effect for $H_2O_2$-induced Inhibition of Gap Junction Intercellular Communication

  • Kim, Su-Na (Food Function Research Group, Korea Food Research Institute) ;
  • Choi, Won-Hee (Food Function Research Group, Korea Food Research Institute) ;
  • Ahn, Ji-Yun (Food Function Research Group, Korea Food Research Institute) ;
  • Ha, Tae-Youl (Food Function Research Group, Korea Food Research Institute)
  • Published : 2009.06.30

Abstract

This study was performed to analyze various antioxidants, to evaluate the antioxidative activities, and to measure the protective effect for gap junction intercellular communication (GJIC) to assess the functional potency of the cherry tomato. The ascorbic acid, lycopene, and ${\beta}-carotene$ were measured at $503.4{\pm}9.6$, $39.7{\pm}1.5$, and $7.4{\pm}0.3$ mg/100 g d.w., and ${\alpha}-$, ${\beta}+{\gamma}-$, ${\delta}-tocopherol$ contents were measured at $8.3{\pm}0.1$, $1.7{\pm}0.0$, and $0.1{\pm}0.0$ mg/100 g d.w., respectively. Cherry tomato extract using hexane/acetone/EtOH (2:1:1, CTE) exhibited a ABTS radical scavenging activity with an $IC_{50}$ value of $48.83{\pm}0.30\;{\mu}g/mL$. The cherry tomato protected against the inhibition of GJIC induced by $H_2O_2$ in WB-F344 rat liver epithelial cells, and the reduction in phosphorylated Cx43 was most clearly correlated with the concentration of CTE. These results demonstrated that the cherry tomato harbors a wealth of potent antioxidants and might be protect human body against the inhibition of the GJIC by toxic components.

Keywords

References

  1. Shi J, Kakuda Y, Yeung D. Antioxidative properties of lycopene and other carotenoids from tomatoes: Sunergistic effects. Biofactors 21: 203-210 (2004) https://doi.org/10.1002/biof.552210141
  2. Lenucci MS, Cadinu D, Taurino M, Piro G, Dalessandro G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agr. Food Chem. 54: 2606-2613 (2006) https://doi.org/10.1021/jf052920c
  3. Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: Review of epidemiologic literature. J. Natl. Cancer I. 91: 317-331 (1999) https://doi.org/10.1093/jnci/91.4.317
  4. Pandey DK, Shekelle R, Selwyn BJ, Tangney C, Stamler J. Dietary vitamin C and beta carotene and risk of death in middle-aged men. The Western electric study. Am. J. Epidemiol. 142: 1269-1278 (1995)
  5. Mossine W, Chopra P, Mawhinney TP. Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Res. 68: 4384-4391 (2008) https://doi.org/10.1158/0008-5472.CAN-08-0108
  6. Sekher Pannala S, Chan TS, O'Brien PJ, Rice-Evans CA. Flavonoid B-ring chemistry and antioxidant activity: Fast reaction kinetics. Biochem. Bioph. Res. Co. 282: 1161-1168 (2001) https://doi.org/10.1006/bbrc.2001.4705
  7. Korean Food Composition Table. 7th ed. Rural Resources Development Institute, Rural Development Administration, Suwon, Korea (2006)
  8. Takeoka GR, Dao L, Flessa S, Gillespie DM, Jewell WT, Huebner B, Bertow D, Ebeler SE. Processing effects on lycopene content and antioxidant activity of tomatoes. J. Agr. Food Chem. 49: 3713-3717 (2001) https://doi.org/10.1021/jf0102721
  9. Das E, Gurakan GC, Bayindirli A. Effect of controlled atmosphere storage, modified atmosphere packaging, and gaseous ozone treatment on the survival of Salmonella Enteritidis on cherry tomatoes. Food Microbiol. 23: 430-438 (2006) https://doi.org/10.1016/j.fm.2005.08.002
  10. Sgherri C, Kadlecova Z, Pardossi A, Navari-Izzo F, Izzo R. Irrigation with diluted seawater improves the nutritional value of cherry tomatoes. J. Agr. Food Chem. 56: 3391-3397 (2008) https://doi.org/10.1021/jf0733012
  11. Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol. 143: 1327-1346 (2007) https://doi.org/10.1104/pp.106.092817
  12. Abe N, Murata T, Hirota A. Novel 1,1-diphenyl 1-2-picrylhydrazylraducal scanvengers, bisorbicillin, and demethyltrichodimerol from a fungus. Biosci. Biotech. Bioch. 62: 661-662 (1998) https://doi.org/10.1271/bbb.62.661
  13. Arnao MB, Cano A, Acosta M. The hydrophilic and lipolhilic contribution to total antioxidant activity. Food Chem. 72: 239-244 (2001) https://doi.org/10.1016/S0308-8146(00)00324-1
  14. Lee KW, Cho SD, Hu H, Lee HJ, Lee CY. Antiproliferative effects of dietary phenolic substances and hydrogen peroxide. J. Agr. Food Chem. 53: 1990-1995 (2005) https://doi.org/10.1021/jf0486040
  15. El-Fouly MH, Trosko JE, Chang CC. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 168: 422-430 (1987) https://doi.org/10.1016/0014-4827(87)90014-0
  16. Kang KS, Yun JW, Yoon B, Lim YK, Lee YS. Preventive effect of germanium dioxide on the inhibition of gap junctional intercellular communication by TPA. Cancer Lett. 152: 97-106 (2000) https://doi.org/10.1016/S0304-3835(99)00438-3
  17. Lee J, Ye L, Landen WO, Eitenmiller RR. Optimization of an extraction procedure for the quantification of vitamin E in tomato and broccoli using response surface methodology. J. Food Compos. Anal. 13: 45-57 (2000) https://doi.org/10.1006/jfca.1999.0845
  18. Scalfi L, Fogliano V, Pentangelo A, Graziani G, Giordano I, Ritieni A. Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes. J. Agr. Food Chem. 48: 1363-1366 (2000) https://doi.org/10.1021/jf990883h
  19. George B, Kaur C, Khurdiya DS, Kapoor HC. Antioxidants in tomato (Lycopersicon esculentum) as a function of genotype. Food Chem. 84: 45-51 (2004) https://doi.org/10.1016/S0308-8146(03)00165-1
  20. Abushita AA, Daood HG, Biacs PA. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agr. Food Chem. 48: 2075-2081 (2000) https://doi.org/10.1021/jf990715p
  21. Dumas Y, Dadomo M, Di Lucca G, Grolier P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agr. 83: 369-382 (2003) https://doi.org/10.1002/jsfa.1370
  22. Segretain D, Falk MM. Regulation of connexin biosunthesis, assembly, gap junction formation, and removal. Biochim. Biophys. Acta 23: 3-21 (2004) https://doi.org/10.1016/j.bbamem.2004.01.007
  23. Rimando AM, Nagmani R, Feller DR, Yokoyama W. Pterostilbene, a new agonist for the peroxisome proliferators activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J. Agr. Food Chem. 53: 3403-3407 (2005) https://doi.org/10.1021/jf0580364
  24. Kim JS, Kim SR, Ahn JY, Ha TY, Kang KS, Kim S. Inhibition of gap junctional intercellular communication in rat liver epithelial cells induced by BHT and porpyl gallate. Korean J. Food Sci. Technol. 30: 558-563 (2007)
  25. Hong E, Choi SI, Kim GH. Determination of lavonoids from Allium victorialis var. platyphyllum and their effect of gap junctional intercellular communication. Food Sci. Biotechnol. 16: 747-752 (2007)
  26. Kang KS, Kang BC, Lee BJ, Che JH, Li GX, Trosko JE, Lee YS. Preventive effect of epicatechin and ginsenoside Rb$_{2}$ on the inhibition of gap junctional intercellular communication by TPA and $H_{2}O_{2}$. Cancer Lett. 152: 97-106 (2000) https://doi.org/10.1016/S0304-3835(99)00438-3
  27. Matesic DF, Rupp HL, Bonney WJ, Ruch RJ, Trosko JE. Changes in gap-junction permeability, phosphorylation, and number mediated by phorbol ester and non-phorbol-ester tumor promoters in rat liver epithelial cells. Mol Carcinogen. 10: 226-236 (1994) https://doi.org/10.1002/mc.2940100407
  28. Kim JS, Kim SR, Ahn J, Ha TY, Kim S, Inhibition of gap-junctional intercellular communication in rat liver epithelial cells induced by BHT and propyl gallate. Korean J. Food Sci. Technol. 39: 558-563 (2007)
  29. Nielsen M, Ruch RJ, Vang O. Resveratrol reverses tumor-promoterinduced inhibition of gap-junctional intercellular communication. Biochmem. Bioph. Res. Co. 275: 804-809 (2000) https://doi.org/10.1006/bbrc.2000.3378
  30. Chaumontet C, Bex V, Véran F, Martel P. The vitamin E analog tocopherol succinate strongly inhibits gap junctional intercellular communication in rat liver epithelial cells (IAR203). J. Nutr. Biochem. 19: 263-268 (2008) https://doi.org/10.1016/j.jnutbio.2007.03.005
  31. Aust O, Ale-Agha N, Zhang L, Wollersen H, Sies H, Stahl W. Lycopene oxidation product enhances gap junctional communication. Food Chem. Toxicol. 41: 399-1407 (2003) https://doi.org/10.1016/S0278-6915(03)00148-0