Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.6.764

Analysis of CMTX Mutants Using Connexin Membrane Channels  

Cheon, Mi-Saek (Department of Physiology, College of Medicine, Dankook University)
Oh, Seung-Hoon (Department of Physiology, College of Medicine, Dankook University)
Publication Information
Journal of Life Science / v.18, no.6, 2008 , pp. 764-769 More about this Journal
Abstract
Mutations in the human connexin 32 (Cx32) gene are responsible for X-linked Charcot-Marie-Tooth (CMTX) disease. Although over 300 different mutations have been identified the detailed molecular etiology of CMTX disease is poorly understood. Several studies reported that connexin membrane channels share most biophysical properties with their parental gap junction channels. In this study, two connexin mutant membrane channels (one mutant channel called the M34T channel in which the methionine residue at the $34^{th}$ position of the Cx32 protein is replaced with threonine residue and the other mutant channel called the T86C channel in which the threonine residue at the $86^{th}$ position is replaced with cysteine residue) associated with CMTX mutations were characterized at the single-channel level instead of using mutant gap junction channels. The biophysical properties of the M34T channel were very similar to those of the gap junction channel formed by M34T mutation. In addition, the mutant membrane channel study revealed the reversal of the gating polarity, the loss of fast gating and the gain of slow gating. The T86C channel also behaves like its parental wild type Cx32 membrane channel. Taken together, these results suggest that a study using connexin membrane channels is useful to characterize CMTX mutants.
Keywords
X-linked Charcot-Marie-Tooth disease; gap junction channel; connexin membrane channel;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cheon, M. and S. Oh. 2007. Single channel analysis of Xenopus connexin 38 hemichannel. J. Life Sci. 17, 1517-1522   과학기술학회마을   DOI   ScienceOn
2 Oh, S., C. K. Abrams, V. K. Verselis and T. A Bargiello. 2000. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J. Gen. Physiol. 116, 13-31   DOI   ScienceOn
3 Sorour, E. and M. Upadhyaya. 1998. Mutation analysis in Charcot- Marie-Tooth disease type 1 (CMT1). Hum. Mutat. Suppl. 1, S242-S247
4 Ressot, c., P. Latour, F. Blanquet-Grossard, F. Sturtz, S. Duthel, J. Battin, E. Corbillon, E. Ollagnon, F. Serville, A Vandenberghe, A Dautigny and D. Pham-Dinh. 1996. X-linked dominant Charcot-Marie-Tooth neuropathy (CMTX): new mutations in the connexin32 gene. Hum. Genet. 98, 172-175   DOI   ScienceOn
5 Harris, A. L. 2001. Emerging issues of connexin channels: Biophysics fills the gap. Q. Rev. Biophys. 34, 325-472
6 Bergoffen, J., S. S. Scherer, S. Wang, M. O. Scott, L. J. Bone, D. L. Paul, K. Chen, M. W. Lensch, P. F. Chance and K. H. Fischbeck. 1993. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 2039-2042   DOI
7 Shy, M. E. 2004. Charcot-Marie-Tooth disease: an update. Curro Opin. Neurol. 17, 579-585
8 Oh, S., Y. Ri, M. V. Bennett, E. B. Trexler, V. K. Verselis and T. A Bargiello. 1997. Changes in permeability caused by connexin 32 mutations underlie X-linked CharcotMarie- Tooth disease. Neuron 19, 927-938   DOI   ScienceOn
9 Oh, S., J. B. Rubin, M. V. L. Bennett, V. K. Verselis and T. A Bargiello. 1999. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexin 26 and 32. J. Gen. Physiol. 114, 339-364   DOI   ScienceOn
10 Trexler, E. B., M. V. Bennett, T. A Bargiello and V. K. Verselis. 1996. Voltage gating and permeation in a gap junction hemichannel. Proc. Natl. Acad. Sci. USA 93, 5836-5841   DOI   ScienceOn
11 Pfahnl, A, X. W. Zhou, R. Werner and G. Dahl. 1997. A chimeric connexin forming gap junction hemichannels. Pflugers Arch. 433, 773-779   DOI   ScienceOn
12 Oh, S., S. Rivkin, Q. Tang, V. K. Verselis and T. A Bargiello. 2004. Determinants of gating polarity of a connexin 32 hemichannel. Biophys. J. 87, 912-928   DOI   ScienceOn
13 Ebihara, L. 1996. Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys. J. 71, 742-748   DOI   ScienceOn
14 Rubin, J. B., V. K. Verselis, M. V. Benett and T. A Bargiello. 1992. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc. Natl. Acad. Sci. USA 89, 3820-3824   DOI   ScienceOn
15 Bone, L. J., S. M. Deschenes, R. J. Balice-Gordon, K. H. Fischbeck and S. S. Scherer. 1997. Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol. Dis. 4, 221-230   DOI   ScienceOn
16 Keller, M. P. and P. F. Chance. 1999. Inherited peripheral neuropathy. Semin. Neurol. 19, 353-362   DOI   ScienceOn
17 Yim, J., M. Cheon, J. Jung and S. Oh. 2006. Effect of amino terminus of gap junction hemichannel on its channel gating. J. Life Sci. 16, 37-43   과학기술학회마을   DOI   ScienceOn
18 Karlin, A and M. H. Akabas. 1998. Substituted-cysteine accessibility method. Methods Enzymol. 293, 123-145   DOI