• 제목/요약/키워드: Gamma-ray Spectroscopy

검색결과 125건 처리시간 0.032초

LYSO 섬광체를 이용한 감마선 분광용 광섬유 방사선 센서의 개발 (Development of Fiber-optic Radiation Sensor Using LYSO Scintillator for Gamma-ray Spectroscopy)

  • 한기택;유욱재;신상훈;전다영;박장연;박병기;이봉수
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.287-292
    • /
    • 2012
  • A fiber-optic radiation sensor was fabricated using a sensing probe, a plastic optical fiber, a photomultiplier tube, and a multichannel analyzer for gamma-ray spectroscopy. As an inorganic scintillator of the sensing probe, a LYSO crystal was used. In this study, we obtained the relationship between the photon counts of the fiber-optic radiation sensor and the activity of the radioactive isotope. In addition, the gamma-ray energy spectra were also measured using a fiber-optic radiation sensor to discriminate species of gamma-ray emitters.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

  • Harding, Alice K.
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.145-152
    • /
    • 2013
  • Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

Calculation of Effective Angular Correlation in the HPGe Spectroscopy of Co-60 $\gamma$-rays

  • Kim, In-Jung;Sun, Gwang-Min;Park, H. D.;Bae, Young-Dug
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.22-29
    • /
    • 2002
  • The angular correlation effect was investigated for Co-60 ${\gamma}$-ray spectroscopy by using HPGe detector and the effective angular correlation was theoretically calculated by considering the finite detector solid angle. For the calculation of effective angular correlation, the detection efficiency as a function of ${\gamma}$-ray incident direction was obtained by using Monte Carlo method and the first interaction model. The results and the methods used in the calculation are discussed.

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

Basic characterization of uranium by high-resolution gamma spectroscopy

  • Choi, Hee-Dong;Kim, Junhyuck
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.929-936
    • /
    • 2018
  • A basic characterization of uranium samples was performed using gamma- and X-ray spectroscopy. The studied uranium samples were eight types of certified reference materials with $^{235}U$ enrichments in the range of 1-97%, and the measurements were performed over 24 h using a high-resolution and high-purity planar germanium detector. A general peak analysis of the spectrum and the $XK_{\alpha}$ region of the uranium spectra was carried out by using HyperGam and HyperGam-U, respectively. The standard reference sources were used to calibrate the spectroscopy system. To obtain the absolute detection efficiency, an effective solid angle code, EXVol, was run for each sample. Hence, the peak activities and isotopic activities were determined, and then, the total U content and $^{234}U$, $^{235}U$, and $^{238}U$ isotopic contents were determined and compared with those of the certified reference values. A new method to determine the model age based on the ratio of the activities of $^{223}Ra$ and $^{235}U$ in the sample was studied, and the model age was compared with the known true age. In summary, the present study developed a method for basic characterization of uranium samples by nondestructive gamma-ray spectrometry in 24 h and to obtain information on the sample age.

감마선을 이용한 케나프 펄프 표면의 Poly(ethylene glycol) Methacrylate 그라프트 중합반응 (Surface Graft Polymerization of Poly(ethylene glycol) Methacrylate onto Kenaf Pulp using Gamma-ray Irradiation)

  • 오두리;전준표;강필현
    • 방사선산업학회지
    • /
    • 제6권3호
    • /
    • pp.251-255
    • /
    • 2012
  • Pulp is typically used for paper industry to manufacturing various types of papers. However simply chemical modification makes enable the pulp to a wide range of application in various industrial fields. To bring the polymerization the gamma ray irradiated on the mixture of kenaf and PEGMA in various dose ranges from 20 to 60 kGy. As a results, the graft degree of 20.0% was obtained from 475 g of gamma ray irradiated pulp and PEGMA. After the polymerization, the chemical structure and morphology of the surfaces were examined by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscope. Chemical structure of grafted pulp has significantly growth in carbonyl content with increasing the radiation dose. Also surface morphology was distinctly changed with decreased the degree of roughness and increasing the diameter. These results were explained gamma ray irradiation improve performance of graft polymerization efficiency.

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.