• Title/Summary/Keyword: Gamma-focused ion beam

Search Result 26, Processing Time 0.026 seconds

Sputtering yield and secondary electron emission coefficient ($\gamma$) of the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ thin film grown on the Cu substrate by using the Focused Ion Beam

  • Jung, Kang-Won;Lee, H.J.;Jeong, W.H.;Oh, H.J.;Choi, E.H.;Seo, Y.H.;Kang, S.O.;Park, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.877-881
    • /
    • 2006
  • We obtained sputtering yields for the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ films using the FIB system. $MgAl_2O_4/MgO$ protective layers have been found to have less $24^{\sim}^30%$ sputtering yield values from 0.24 atoms/ion up to 0.36 atoms/ion than MgO layers with the values from 0.36 atoms/ion up to 0.45 atoms/ion for irradiated $Ga^+$ ion beam whose energies ranged from 10 keV to 14 keV. And $MgAl_2O_4$ layers have been found to have lowest sputtering yield values from 0.88 up to 0.11. It is also found that $MgAl_2O_4/MgO$ and MgO have secondary electron emission $coefficient({\gamma})$ values from 0.09 up to 0.12 for $Ne^+$ ion whose energies ranged from 50 eV to 200 eV.

  • PDF

Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

  • Lee, Jin Young;Baik, Ku Youn;Kim, Tae Soo;Jin, Gi-Hyeon;Kim, Hyeong Sun;Bae, Jae Hyeok;Lee, Jin Won;Hwang, Seung Hyun;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.1-262.1
    • /
    • 2014
  • Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (${\gamma}$ value) was measured by using home-made gamma-focused ion beam (${\gamma}$-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

  • PDF

Determination of the work function of the Ni thin films by using $\gamma-FIB$ system ($\gamma-FIB$ 장치를 사용한 Ni 박막의 일함수 결정)

  • 오현주;현정우;이지훈;임재용;추동철;최은하;김태환;강승언
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.16-19
    • /
    • 2003
  • Ni thin films on the p-InP (In) substrates were grown at room temperature by using the ion beam-assisted deposition. In order to determine the work function of the Ni thin films, the $\gamma$values were measured as functions of the acceleration voltages by using Ne, Ar, $N_2$. and Xe ion sources. The dependences of the values on various gases and on the acceleration voltages of the focused ion beam were obtained to determine the work function of the Ni thin films. The value of the work function of the Ni thin films grown on the p-InP (100) substrate was 5.8 eV ~ 5.85 eV. These results provide important information on the electronic properties of Ni thin films grown on p-InP (100) substrates at room temperature.

Influence of atmospheric air-holding time before air annealing on the secondary electron emission coefficient(${\gamma}$) from a MgO protective layer

  • 정진만
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.202-202
    • /
    • 2000
  • AC-PDP(Plasma Display Paner)는 기체 방전을 이용한 디스플레이로서 기체에 직접 노출되는 MgO 보호막의 2차전자 방출계수(${\gamma}$는 AC-PDP의 방전특성을 결정짓는 중요한 요소이다. MgO 보호막의 이차전자 방출계수는 AC-PDP에 주입하는 기체의 종류, 결정 방향성과 표면오염상태 등에 영향을 받는다. 본 연구에서는 유리 기판위에 Al 전극을 증착, 에칭후 screen printing으로 유전체를 도포, 소성 한 21inch 규격의 test panel에 MgO 보호막을 E-Beam으로 5000$\AA$ 증착한 후 MgO 보호막을 대기에 노출되는 시간간격을 변수로 하여 대기 열처리 한 MgO보호막의 2차 전자방출계수를 ${\gamma}$-FIB(Focused Ion Beam) 장치를 이용하여 측정하였다. 그리고 대기 노출 간격은 1분, 5분, 20분으로 하여 2차 전자방출계수를 측정하였고, 2차전자방출계수 측정 시 가속전압은 50V에서 200V까지 변화를 주었으며, Ne+을 사용하여 1.2$\times$10-4Torr의 진공도를 유지하며 측정하였다. 또한 각각의 MgO막의 에너지 갭을 광학적 방법을 이용하여 구하였다.

  • PDF

Sputtering Yield and Secondary Electron Emission Coefficient(${\gamma}$) of the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ Thin Film Grown on the Cu Substrate by Using the Focused Ion Beam (Cu 기판위에 성장한 MgO, $MgAl_2O_4$$MgAl_2O_4/MgO$ 박막의 집속이온빔을 이용한 스퍼터링수율 측정과 이차전자방출계수 측정)

  • Jung K.W.;Lee H.J.;Jung W.H.;Oh H.J.;Park C.W.;Choi E.H.;Seo Y.H.;Kang S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.395-403
    • /
    • 2006
  • It is known that $MgAl_2O_4$ has higher resistance to moisture than MgO, in humid ambient MgO is chemically unstable. It reacts very easily with moisture in the air. In this study, the characteristic of $MgAl_2O_4$ and $MgAl_2O_4/MgO$ layers as dielectric protection layers for AC- PDP (Plasma Display Panel) have been investigated and analysed in comparison for conventional MgO layers. MgO and $MgAl_2O_4$ films both with a thickness of $1000\AA$ and $MgAl_2O_4/MgO$ film with a thickness of $200/800\AA$ were grown on the Cu substrates using the electron beam evaporation. $1000\AA$ thick aluminium layers were deposited on the protective layers in order to avoid the charging effect of $Ga^+$ ion beam while the focused ion beam(FIB) is being used. We obtained sputtering yieds for the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ films using the FIB system. $MgAl_2O_4/MgO$ protective layers have been found th show $24{\sim}30%$ lower sputtering yield values from 0.244 up to 0.357 than MgO layers with the values from 0.364 up to 0.449 for irradiated $Ga^+$ ion beam with energies ranged from 10 kV to 14 kV. And $MgAl_2O_4$ layers have been found to show lowest sputtering yield values from 0.88 up to 0.109. Secondary electron emission coefficient(g) using the ${\gamma}$- FIB. $MgAl_2O_4/MgO$ and MgO have been found to have similar g values from 0.09 up to 0.12 for indicated $Ne^+$ ion with energies ranged from 50 V to 200 V. Observed images for the surfaces of MgO and $MgAl_2O_4/MgO$ protective layers, after discharge degradation process for 72 hours by SEM and AFM. It is found that $MgAl_2O_4/MgO$ protective layer has superior hardness and degradation resistance properties to MgO protective layer.

Changes in Work Function after O-Plasma Treatment on Indium-Tin-Oxide (산소 플라즈마로 처리한 ITO(Indium-Tin-Oxide)에 대한 일함수 변화)

  • 김근영;오준석;최은하;조광섭;강승언;조재원
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2002
  • The change in work function was studied on Indium-Tin-Oxide(ITO) surface after O-plasma treatment using $\gamma$-Focused ion Beam($\gamma$-FIB). As the surface of ITO experienced more O-plasma treatment, both the surface resistivity and the work function got higher. Auger Electron Spectroscopy identified the increase of oxygen as well as the decrease of Sn. The rise of work function and surface resistivity is considered to be due to the change in oxygen and Sn on the surface of ITO.

Influence of vacuum annealing on the secondary electron emission coefficient(${\gamma}$) from a MgO protective layer

  • Jeoung, J.M.;Leem, J.Y.;Cho, T.S.;Choi, M.C.;Ahn, J.C.;Kim, J.G.;Kim, Y.G.;Cho, D.S.;Kim, S.S.;Kim, T.Y.;Choi, S.H.;Chong, M.W.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Kang, S.O.;Cho, G.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.113-114
    • /
    • 2000
  • The secondary electron emission coefficient(${\gamma}$) of vacuum annealed MgO films has been investigated by ${\gamma}-focused$ ion beam(${\gamma}-FIB$) system. The vacuum annealed MgO films have been found to have higher ${\gamma}$ values from 0.053 up to 0.121 than those for as-deposited MgO films from 0.026 up to 0.062 for $Ne^+$ ion energies ranged from 50eV to 200eV. Also it is found that ${\gamma}$ for air hold of vacuum annealed MgO layers for 24-hours is similar to that for vacuum annealed MgO films without any air-hold.

  • PDF

A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature (고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구)

  • Woo, Byung-Hoon;Bae, Chang-Won;Moon, Kyong-Man;Bae, Sung-Yeol;Higo, Yakichi;Kim, Yun-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.

Influence of gas mixture ratio on the secondary electron emission coefficient ($\gamma$) fo MgO single crystals and MgO protective layer in AC PDP

  • Lim, Jae-Yong;Jung, J.M.;Choi, M.C.;Ahn, J.C.;Cho, T.S.;Kim, T.Y.;Kim, S.S.;Jung, M.W.;Choi, S.H.;Kim, S.B.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Seo, Y.;Cho, G.S.;Kang, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.145-147
    • /
    • 2000
  • The secondary electron emission coefficient y of MgO single crystal according to the gas mix-ture ratio of Xe, $N_2$ to Ne have been investigated by $\gamma$-focused ion beam system. It is found that the MgO single crystals of (111) crystallinity has the highest $\gamma$ for operating Ne(Xe) ions ranging from 50eV to 200eV throughout this experiment. And it is found that the $\gamma$ for gas mixtures are much smaller than pure Ne ions.

  • PDF

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.