• Title/Summary/Keyword: Gamma spectroscopy

Search Result 288, Processing Time 0.034 seconds

Neutron and gamma-ray energy reconstruction for characterization of special nuclear material

  • Clarke, Shaun D.;Hamel, Michael C.;Di fulvio, Angela;Pozzi, Sara A.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1354-1357
    • /
    • 2017
  • Characterization of special nuclear material may be performed using energy spectroscopy of either the neutron or gamma-ray emissions from the sample. Gamma-ray spectroscopy can be performed relatively easily using high-resolution semiconductors such as high-purity germanium. Neutron spectroscopy, by contrast, is a complex inverse problem. Here, results are presented for $^{252}Cf$ and PuBe energy spectra unfolded using a single EJ309 organic scintillator; excellent agreement is observed with the reference spectra. Neutron energy spectroscopy is also possible using a two-plane detector array, whereby time-of-flight kinematics can be used. With this system, energy spectra can also be obtained as a function of position. Spatial-dependent energy spectra are presented for neutron and gamma-ray sources that are in excellent agreement with expectations.

Flexible liquid light-guide-based radiation sensor with LaBr3:Ce scintillator for remote gamma-ray spectroscopy

  • Jae Hyung Park;Siwon Song;Seunghyeon Kim;Taeseob Lim;Jinhong Kim;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1045-1051
    • /
    • 2023
  • In this study, we fabricated a liquid light-guide-based radiation sensor with a LaBr3:Ce scintillator for remote gamma-ray spectroscopy. We acquired the energy spectra of Cs-137 and Co-60 using the proposed sensor, estimated the energy resolutions of the full energy peaks, and compared the scintillation light output variations. The major peaks of the radionuclides were observed in each result, and the estimated energy resolutions were similar to that of a general NaI(Tl) scintillation detector without a liquid light guide. Moreover, we showed the relationships of energy resolution and analog-to-digital channel regarding the number of photoelectrons produced and confirmed the effects of light guide length on remote gamma-ray spectroscopy. The proposed sensor is expected to be utilized to perform remote gamma-ray spectroscopy for distances of 3 m or more and would find application in many fields of nuclear facilities and industry.

Monte Carlo simulations for gamma-ray spectroscopy using bismuth nanoparticle-containing plastic scintillators with spectral subtraction

  • Taeseob Lim ;Siwon Song ;Seunghyeon Kim ;Jae Hyung Park ;Jinhong Kim;Cheol Ho Pyeon;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3401-3408
    • /
    • 2023
  • In this study, we used the Monte Carlo N-Particle program to simulate the gamma-ray spectra obtained from plastic scintillators holes filled with bismuth nanoparticles. We confirmed that the incorporation of bismuth nanoparticles into a plastic scintillator enhances its performance for gamma-ray spectroscopy using the subtraction method. The subtracted energy spectra obtained from the bismuth-nanoparticle-incorporated and the original plastic scintillator exhibit a distinct energy peak that does not appear in the corresponding original spectra. We varied the diameter and depth of the bismuth-filled holes to determine the optimal hole design for gamma-ray spectroscopy using the subtraction method. We evaluated the energy resolutions of the energy peaks in the gamma-ray spectra to estimate the effects of the bismuth nanoparticles and determine their optimum volume in the plastic scintillator. In addition, we calculated the peak-to-total ratio of the energy spectrum to evaluate the energy measuring limit of the bismuth nanoparticle-containing plastic scintillator using the subtraction method.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

A Study on the Natural Uranium Contamination Measuring Technology (천연우라늄 오염에 관한 방사선/능 측정기술 연구)

  • 정운수;홍상범;서범경;박진호;조용우;조성원;이정민
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.407-417
    • /
    • 2004
  • This study is to verify radiation detection method by using $\alpha$-spectroscopy and ${\gamma}$-spectroscopy for concretes and components which will be generated during the decommissioning of the uranium conversion plant. Components and inside walls of the building were contaminated with natural uranium materials. Some parts of the stainless steel pipes and concretes of the walls were sampled and analyzed their alpha and gamma activities respectively. Alpha and gamma activities are well matched each other in the range of high activity region to 0.01 Bq/g and gamma activities are over estimated comparing alpha activities corresponded in below 0.005 Bq/g region for the natural uranium of AUC sample. The $^{238}U$ originated from natural products of conversion process could be distinguished by measuring $^{214}Pb$ or $^{214}Bi$ and $^{234}Th$ or $^{234m}Pa$. Uranium contaminations mainly are in the wall surface of the plant. Decontamination process of generating wastes which can be reached tp background level gamma activities measured by gamma spectroscopy can also be used to conservative assessment data.

  • PDF

Solution Structure of Neuropeptide $\gamma$ from Carassius auratus by NMR spectroscopy

  • Lee, Sangwon;Park, Namgyu;Kim, Yangmee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.31-31
    • /
    • 1999
  • Neuropeptide ${\gamma}$ is a recently identified tachykinin family peptide which has conserved ammo acid sequence of -Phe-X-Gly-Leu-Met-NH2 in the C-terminal region, where X represents aromatic or hydrophobic residues. In this study, three-dimensional structure of neuropeptide ${\gamma}$ from goldfish Carassius auratus (G-NP${\gamma}$) was determined by NMR spectroscopy.(omitted)

  • PDF

Application Study of Chemoinfometrical Near-Infrared Spectroscopic Method to Evaluate for Polymorphic Content of Pharmaceutical Powders (일본의 근적외선분광법에 대한 제약회사 응용 및 현황)

  • Otsuka, Makoto
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2002.11a
    • /
    • pp.97-117
    • /
    • 2002
  • A chemoinfometrical method for quantitative determination of crystal content of indomethacin (IMC) polymorphs based on fourie-transformed near-infrared (FT-NIR) spectroscopy was established. A direct comparison of the data with the ones collected from using the conventional powder X-ray diffraction method was performed. Pure $\alpha$ and ${\gamma}$ forms of IMC were prepared using published methods. Powder X-ray diffraction profiles and NIR spectra were recorded for six kinds of standard materials with various content of ${\gamma}$ form IMC. The principal component regression (PCR) analyses were performed based on normalized NIR spectra sets of standard samples of known content of IMC ${\gamma}$ form. A calibration equation was determined to minimize the root mean square error of the prediction. The predicted ${\gamma}$ form content values were reproducible and had a relatively small standard deviation. The values of ${\gamma}$ form content predicted by two methods were in close agreement. The results were indicated that NIR spectroscopy provides for an accurate quantitative analysis of crystallinity in polymorphs compared with the results obtained by conventional powder X-ray diffractometry.

  • PDF

Effect of Coincidence Gamma-ray Spectroscopy to the Reduction of Background Spectrum

  • Kim, Taewook;Changsoo Yoou;Chongmook park;Kim, Byungtae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.464-469
    • /
    • 1998
  • A coincidence gamma-ray spectroscopy method was applied to reduce the background radioactivity for measuring the activity of radioisotopes in a sample in the presence of environmental natural radioactivity. A HPGe detector was used for the coincident spectrum as a main detector and a NaI(Tl) scintillation detector for gating purposes as an associated detector. For coincidence spectroscopy the whole energy spectrum of associated detector was used instead of gate signals. The coincident events obtained from the gating spectrum was evaluated by a coincidence computer program in this study instead of timing circuit. In this work, the background of detection environment was reduced to factor 100 and peaks to be determined was reduced to factor 30 using the coincidence gamma-ray spectroscopy.

  • PDF

Development of Spectroscopy Toolkit for Spectrum Measurement Experiments Using a CsI(Tl)/PIN Diode Detector

  • Nam, Young-Mi;Kim, Han-Soo;Ha, Jang-Ho;Lee, Jae-Hyung
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.77-80
    • /
    • 2010
  • The spectroscopy toolkit has been developed and tested. The toolkit consists of a CsI(Tl)/PIN diode detector, integrated electronics, and a multi.channel.analyzer and its size was 40 cm(width) by 20 cm(length) by 6 cm(high). It is compact, very portable and simpler and cheaper compared to the conventional spectroscopy system. The gamma energy resolutions of the toolkit were 7.9% for the 660 keV of $^{137}Cs$ and 4.9% for 1,332 keV of $^{60}Co$ respectively. The linearity for gamma energies was good. When the energy spectrum of a ceramic sample containing $^{232}Th$ was measured with the spectroscopy toolkit for 20 minutes, there were significant peaks of the heavy metal. These results show that the resolution of the spectroscopy toolkit is sufficient to accumulate a quality spectrum in a few minutes by using weak, encapsulated commercial sources. Furthermore a toolkit experiment that how to measure energy spectra using the toolkit, and how to identify specific isotopes in a pottery piece, could be widely adopted for education and even for more sophisticated and higher level experiments.

Development of Neutron Induced Prompt γ-ray Spectroscopy System Using 252Cf (252Cf 선원을 이용한 즉발감마선 계측시스템 구성)

  • Park, Yong-Joon;Song, Byung-Chul;Jee, Kwang-Yong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.12-24
    • /
    • 2003
  • For the design and set-up of neutron induced prompt ${\gamma}$-ray spectroscopy system using $^{252}Cf$ neutron source, the effects of shielding and moderator materials have been examined. The $^{252}Cf$ source being used for TLD badge calibration in Korea Atomic Energy Research Institute was utilized for this preliminary experiment. The ${\gamma}$-ray background and prompt ${\gamma}$-ray spectrum of the sample containing Cl were measured using HPGe (GMX 60% relative efficiency) located at the inside of the system connected to notebook PC at the outside of the system (about 20 meter distance). The background activities of neutron and ${\gamma}$-rays were measured with neutron survey meter as well as ${\gamma}$-ray survey meters, respectively and the system was designed to minimize the activities. Prompt ${\gamma}$-ray spectrum was measured using ${\gamma}$-${\gamma}$ coincident system for reduce the background and the continuum spectrum. The optimum system was designed and set up using the experimental data obtained.