DOI QR코드

DOI QR Code

Flexible liquid light-guide-based radiation sensor with LaBr3:Ce scintillator for remote gamma-ray spectroscopy

  • Jae Hyung Park (School of Energy Systems Engineering, Chung-Ang University) ;
  • Siwon Song (School of Energy Systems Engineering, Chung-Ang University) ;
  • Seunghyeon Kim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Taeseob Lim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Jinhong Kim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Bongsoo Lee (School of Energy Systems Engineering, Chung-Ang University)
  • Received : 2022.08.30
  • Accepted : 2022.11.16
  • Published : 2023.03.25

Abstract

In this study, we fabricated a liquid light-guide-based radiation sensor with a LaBr3:Ce scintillator for remote gamma-ray spectroscopy. We acquired the energy spectra of Cs-137 and Co-60 using the proposed sensor, estimated the energy resolutions of the full energy peaks, and compared the scintillation light output variations. The major peaks of the radionuclides were observed in each result, and the estimated energy resolutions were similar to that of a general NaI(Tl) scintillation detector without a liquid light guide. Moreover, we showed the relationships of energy resolution and analog-to-digital channel regarding the number of photoelectrons produced and confirmed the effects of light guide length on remote gamma-ray spectroscopy. The proposed sensor is expected to be utilized to perform remote gamma-ray spectroscopy for distances of 3 m or more and would find application in many fields of nuclear facilities and industry.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (No. 20201520300060) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020M2D2A2062457, 2022M2D4A1084440).

References

  1. IAEA, Programmes and Systems for Source and Environmental Radiation Monitoring, Safety Reports Series No. 64, International Atomic Energy Agency, 2010.
  2. IAEA, Classification of Radioactive Waste, Safety Standards Series No. GSG-1, International Atomic Energy Agency, 2009.
  3. NRC, Consolidated Decommissioning Guidance: Characterization, Survey, and Determination of Radiological Criteria, NUREG-1757 2, U.S. Nuclear Regulatory Commission, 2006.
  4. DOE, Pipe Explorer Surveying System. Innovative Technology Summary Report, DOE/EM-0440, U.S. Department of Energy, 1999.
  5. M. Balasko, E. Svab, A. Kuba, Z. Kiss, L. Rodek, A. Nagy, Pipe corrosion and deposit study using neutron- and gamma- radiation sources, Nucl. Instrum. Methods Phys. Res. 542 (2005) 302-308, https://doi.org/10.1016/j.nima.2005.01.153.
  6. K.-T. Han, W.J. Yoo, J.K. Seo, S.H. Shin, D. Jeon, S. Hong, S. Cho, J.H. Moon, B. Lee, Optical fiber-based gamma-ray spectroscopy with cerium-doped lutetium yttrium orthosilicate crystal, Opt. Rev. 20 (2013) 205-208, https://doi.org/10.1007/s10043-013-0036-z.
  7. W.J. Yoo, S.H. Shin, D.E. Lee, K.W. Jang, S. Cho, B. Lee, Development of a small-sized, flexible, and insertable fiber-optic radiation sensor for gamma-ray spectroscopy, Sensors 15 (2015) 21265-21279, https://doi.org/10.3390/s150921265.
  8. Y.B. Song, S.H. Shin, S.W. Song, H.J. Kim, S. Cho, B. Lee, Feasibility study on remote gamma spectroscopy system with fiber-optic radiation sensor, J. Radioanal. Nucl. Chem. 316 (2018) 1301-1306, https://doi.org/10.1007/s10967-018-5754-z.
  9. B. Lee, K.W. Jang, D.H. Cho, W.J. Yoo, G.-R. Tack, S.-C. Chung, S. Kim, H. Cho, Measurements and elimination of Cherenkov light in fiber-optic scintillating detector for electron beam therapy dosimetry, Nucl. Instrum. Methods Phys. Res. 579 (2007) 344-348, https://doi.org/10.1016/j.nima.2007.04.074.
  10. K. Nomura, A. Yunoki, M. Hara, Y. Morito, A. Fujishima, Development of a flexible γ-ray detector using a liquid scintillation light guide (LSLG), Appl. Radiat. Isot. 139 (2018) 12-19, https://doi.org/10.1016/ j.apradiso.2018.04.018.
  11. M. Hayashi, J. Kawarabayashi, K. Asai, H. Iwai, Y. Nakagawa, T. Iguchi, Position-sensitive radiation detector with flexible light guide and liquid organic scintillator to monitor distributions of radioactive isotopes, J. Nucl. Sci. Technol. 45 (2008) 81-84, https://doi.org/10.1080/00223131.2008.10875982.
  12. J. Kawarabayashi, R. Mizuno, D. Inui, K. Watanabe, T. Iguchi, Potential on liquid light guide as distributed radiation sensor, IEEE Symposium Conference Record Nuclear Science 2 (2004) (2004) 712-714, https://doi.org/10.1109/NSSMIC.2004.1462310.
  13. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, High-energy-resolution scintillator: Ce3+ activated LaBr3, Appl. Phys. Lett. 79 (2001) 1573-1575, https://doi.org/10.1063/1.1385342.
  14. F. Quarati, A.J.J. Bos, S. Brandenburg, C. Dathy, P. Dorenbos, S. Kraft, R.W. Ostendorf, V. Ouspenski, A. Owens, X-ray and gamma-ray response of a 2"×2" LaBr3:Ce scintillation detector, Nucl. Instrum. Methods Phys. Res. 574 (2007) 115-120, https://doi.org/10.1016/j.nima.2007.01.161.
  15. F.G.A. Quarati, P. Dorenbos, J. van der Biezen, A. Owens, M. Selle, L. Parthier, P. Schotanus, Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers, Nucl. Instrum. Methods Phys. Res. 729 (2013) 596-604, https://doi.org/10.1016/j.nima.2013.08.005.
  16. B. Loher, D. Savran, E. Fiori, M. Miklavec, N. Pietralla, M. Vencelj, High count rate γ-ray spectroscopy with LaBr3:Ce scintillation detectors, Nucl. Instrum. Methods Phys. Res. 686 (2012) 1-6, https://doi.org/10.1016/j.nima.2012.05.051.
  17. Lumatec, Liquid light guide datasheet. Available online: https://lumatec.de/files/5415/0643/4704/brochure-liquid-light-guide-en.pdf.
  18. Caen, MC2Analyzer User manual. Available online: https://www.caen.it/support-services/documentation-area/?documentbyname=mc2analyzer&type=all-categories.
  19. F.G.A. Quarati, I.V. Khodyuk, C.W.E. van Eijk, P. Quarati, P. Dorenbos, Study of 138La radioactive decays using LaBr3 scintillators, Nucl. Instrum. Methods Phys. Res. 683 (2012) 46-52, https://doi.org/10.1016/j.nima.2012.04.066.
  20. M. Balcerzyk, M. Moszynski, M. Kapusta, Comparison of LaCl3:Ce and NaI(Tl) scintillators in γ-ray spectrometry, Nucl. Instrum. Methods Phys. Res. 537 (2005) 50-56, https://doi.org/10.1016/j.nima.2004.07.233.
  21. P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals, IEEE Trans. Nucl. Sci. 42 (1995) 2190-2202, https://doi.org/10.1109/23.489415.
  22. P. Dorenbos, Light output and energy resolution of Ce3+-doped scintillators, Nucl. Instrum. Methods Phys. Res. 486 (2002) 208-213, https://doi.org/10.1016/S0168-9002(02)00704-0.
  23. I.V. Khodyuk, P. Dorenbos, Nonproportional response of LaBr3:Ce and LaCl3: Ce scintillators to synchrotron x-ray irradiation, J. Phys. Condens. Matter 22 (2010) 485402-485408, https://doi.org/10.1088/0953-8984/22/48/485402.
  24. G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, Inc., New York, 2000.
  25. C. Kuntner, E. Auffray, P. Lecoq, C. Pizzolotto, M. Schneegans, Crystal Clear Collaboration, Intrinsic energy resolution and light output of the Lu0.7Y0.3AP: Ce scintillator, Nucl. Instrum. Methods Phys. Res. 493 (2002) 131-e136, https://doi.org/10.1016/S0168-9002(02)01559-0.
  26. J.B. Birks, The Theory and Practice of Scintillation Counting, first ed., Pergamon, New York, 1967.