• Title/Summary/Keyword: Gamma shielding

Search Result 188, Processing Time 0.048 seconds

An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys

  • Agar, O.;Sayyed, M.I.;Akman, F.;Tekin, H.O.;Kacal, M.R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.853-859
    • /
    • 2019
  • A comprehensive study of photon interaction features has been made for some alloys containing Pd and Ag content to evaluate its possible use as alternative gamma radiations shielding material. The mass attenuation coefficient (${\mu}/{\rho}$) of the present alloys was measured at various photon energies between 81 keV-1333 keV utilizing HPGe detector. The measured ${\mu}/{\rho}$ values were compared to those of theoretical and computational (MCNPX code) results. The results exhibited that the ${\mu}/{\rho}$ values of the studied alloys are in the same line with results of WinXCOM software and MCNPX code results at all energies. Moreover, Pd75/Ag25 alloy sample has the maximum radiation protection efficiency (about 53% at 81 keV) and lowest half value layer, which shows that Pd75/Ag25 has superior gamma radiation shielding performance among the other compared alloys.

Performance Evaluation of Gamma ray Shielding of Antimony Shielding Sheet (안티몬 차폐시트의 감마선 차폐 성능평가)

  • Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.135-140
    • /
    • 2018
  • In this study, the dose of antimony shielding sheet was measured and the shielding rates according to the distance between the radioisotopes and the detector was analyzed according to the type of $^{99m}Tc$, $^{18}F$, $^{201}Tl$, $^{131}I$, $^{123}I$ using the antimony shielding sheet. The detector was used with an inspector. Six sheets of 0.25 mmPb were prepared with 20 cm width and length. Measurement results using $^{99m}Tc$, $^{201}Tl$, and $^{123}I$ showed that as the thickness of the sheet became thicker, the farther the distance from the source to the sheet was, the smaller the transmitted dose amount was measured. It was analyzed that a thickness of 1.50 mm or more was required to obtain a shielding rates of 90% or more. In the experiments of $^{18}F$ and $^{131}I$, the dose value was highest when 0.25 mm sheet was used, and the shielding rates was negative, unlike the results of other radioisotopes. Since $^{201}Tl$ are used when using antimony sheet and $^{18}F$ and $^{131}I$ have no shielding effect, it is thought that it is effective to reduce dose by repeating training and simulation training so that work can be done in a short time.

Analysis of Radiation Shielding Effect of Soft Magnetic Material applied to Military Facility (경량 연자성 소재의 군 시설물 적용 시 방사선 차폐효과 분석)

  • Lee, Sangkyu;Lee, Sangmin;Choi, Gyoungjun;Lee, Byounghwak
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • The purpose of this research is to analyze the radiation shielding effect of soft magnetic material to confirm the applicability to the military facilities. The soft magnetic material is known to be effective in shielding EMP. If this material is also effective in radiation shielding, it is expected that it has a lot of applicability in military protection. In particular, this material contains boron, so it will be effective in shielding neutrons. In this research, experiments were conducted using Cs-137 and Co-60 sources to check the gamma ray shielding effect. In addition, the Monte Carlo N-Particle(MCNP) modeling was applied to evaluate the gamma ray and neutron shielding effect of a military command tent. As a result, as the soft magnetic thickness increased, the shielding performance improved according the linear attenuation law of gamma ray and neutron. Therefore, this research verified that the application of soft magnetic material for military purposes in radiation shielding would be effective.

A study on the optimization of light weight high efficiency shield for gamma-ray imaging detector (감마선 영상화 장치용 경량 고효율 차폐체 최적설계에 관한 연구)

  • Park, Gang-teck;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.773-774
    • /
    • 2016
  • In this study, we perform the weight reduction and miniaturization of the shielding element that is applied for gamma-ray detectors for imaging of gamma-ray source. Through previous studies, we implemented a lead-based shielding element that represents the shielding effectiveness and performance of commercially available gamma-ray imaging apparatus similar to the shielding body. In this paper, we designed a tungsten-based shield for weight reduction and miniaturization than lead-based shield. We performed the MCNP simulation for shield design and then we obtained the results of reducing the weight of the 17% and 51% of the volume.

  • PDF

Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite

  • Akman, Ferdi.;Ogul, H.;Ozkan, I.;Kacal, M.R.;Agar, O.;Polat, H.;Dilsiz, K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.283-292
    • /
    • 2022
  • Advanced radiation applications have been widely used and extended to many fields. As a result of this fact, choosing an appropriate shielding material based on the radiation application has become vital. In this regard, the integration of elements into polymer composites has been investigated and contributed to the quantity and quality of radiation shielding materials. This study reports photon attenuation parameters and electromagnetic shielding effectiveness of a novel polymer composite prepared with a matrix reinforced with three different proportions (5, 10, and 15 wt%) of niobium content. Addition of Nb dopant improves both photon attenuation and electromagnetic shielding effectiveness for the investigated composites. Therefore, Nb(15%) polymer composite with highest concentration has been found to be the best absorber for ionizing and non-ionizing radiations. Consequently, the performed analyzes provide evidences that the prepared Nb-reinforced polymer composite could be effectively used as photon radiation attenuator and electromagnetic shielding material.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

Enhancing Gamma-Neutron Shielding Effectiveness of Polyvinylidene Fluoride for Potent Applications in Nuclear Industries: A Study on the Impact of Tungsten Carbide, Trioxide, and Disulfide Using EpiXS, Phy-X/PSD, and MCNP5 Code

  • Ayman Abu Ghazal;Rawand Alakash;Zainab Aljumaili;Ahmed El-Sayed;Hamza Abdel-Rahman
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.184-196
    • /
    • 2023
  • Background: Radiation protection is crucial in various fields due to the harmful effects of radiation. Shielding is used to reduce radiation exposure, but gamma radiation poses challenges due to its high energy and penetration capabilities. Materials and Methods: This work investigates the radiation shielding properties of polyvinylidene fluoride (PVDF) samples containing different weight fraction of tungsten carbide (WC), tungsten trioxide (WO3), and tungsten disulfide (WS2). Parameters such as the mass attenuation coefficient (MAC), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), and macroscopic effective removal cross-section for fast neutrons (ΣR) were calculated using the Phy-X/PSD software. EpiXS simulations were conducted for MAC validation. Results and Discussion: Increasing the weight fraction of the additives resulted in higher MAC values, indicating improved radiation shielding. PVDF-xWC showed the highest percentage increase in MAC values. MFP results indicated that PVDF-0.20WC has the lowest values, suggesting superior shielding properties compared to PVDF-0.20WO3 and PVDF-0.20WS2. PVDF-0.20WC also exhibited the highest Zeff values, while PVDF-0.20WS2 showed a slightly higher increase in Zeff at energies of 0.662 and 1.333 MeV. PVDF-0.20WC has demonstrated the highest ΣR value, indicating effective shielding against fast neutrons, while PVDF-0.20WS2 had the lowest ΣR value. The Monte Carlo N-Particle Transport version 5 (MCNP5) simulations showed that PVDF-xWC attenuates gamma radiation more than pure PVDF, significantly decreasing the dose equivalent rate. Conclusion: Overall, this research provides insights into the radiation shielding properties of PVDF mixtures, with PVDF-xWC showing the most promising results.

Evaluation of the Shielding Effect of Lead Apron according to the Energy Spectrum Change of 99mTc (99mTc의 에너지 스펙트럼 변화에 따른 납 앞치마의 차폐 효과 평가)

  • Changyong Yoon;Youngsik Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.889-896
    • /
    • 2023
  • Changes in the energy spectrum were analyzed using 99mTc as a point source and a scattering phantom, and the shielding effect of the lead apron according to the changed gamma ray energy was evaluated. In the gamma ray energy spectrum of the scattering phantom, the photo peak area decreased and the compton scattering area increased compared to the point source. The coefficients for each energy range according to the change in the shape of the gamma ray source showed a reduction rate of up to 66.1 % at a distance of 20 cm compared to the coefficient of the point source, and in the compton scattering area, the coefficient of the scattering phantom was 122.2 % at a distance of up to 40 cm compared to the coefficient of the point source. In the difference in shielding rate according to the distance between the source and the scattering phantom using a gamma camera, the photo peak area showed similar results, but in the Compton scattering area, the shielding rate of the scattering phantom at a distance of 20 cm increased by 29.2 % compared to the shielding rate of the point source. As the distance increased, the difference in shielding rate decreased. In measuring the shielding rate of the lead apron using a radiation dosimeter, the difference in the shielding rate of the scattering phantom was up to 15.3 %, and as the distance increased, the difference in the shielding rate between the two sources decreased. The shielding rate of the lead apron of the scattering phantom is higher than that of the point source, and the effectiveness of the lead apron increases as the distance to the source increases. As a result, wearing a lead apron when directly confronting a patient who has injected radioactive pharmaceuticals is expected to be helpful in reducing radiation exposure.

Physical characterization and radiation shielding features of B2O3-As2O3 glass ceramic

  • Mohamed Y. Hanfi;Ahmed K. Sakr;A.M. Ismail;Bahig M. Atia;Mohammed S. Alqahtani;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.278-284
    • /
    • 2023
  • The synthetic B2O3-As2O3 glass ceramic are prepared to investigate the physical properties and the radiation shielding capabilities with the variation of concentration of the As2O3 with 10, 20, 30, and 40%, respectively. XRD analyses are performed on the fabricated glass-ceramic and depicted the improvement of crystallinity by adding As2O3. The radiation shielding properties are studied for the B2O3-As2O3 glass ceramic. The values of linear attenuation coefficient (LAC) are varied with the variation of incident photon gamma energy (23.1-103 keV). The LAC values enhanced from 12.19 cm-1-37.75 cm-1 by raising the As2O3 concentration from 10 to 40 mol% at low gamma energy (23.1 keV) for BAs10 and BAs40, respectively. Among the shielding parameters, the half-value layer, transmission factor, and radiation protection efficiency are estimated. Furthermore, the fabricated samples of glass ceramic have low manufacturing costs and good shielding features compared to the previous work. It can be concluded the B2O3-As2O3 glass ceramic is appropriate to apply in X-ray or low-energy gamma-ray shielding applications.

Micro gadolinium oxide dispersed flexible composites developed for the shielding of thermal neutron/gamma rays

  • Boyu Wang;Xiaolin Guo;Lin Yuan;Qinglong Fang;Xiaojuan Wang;Tianyi Qiu;Caifeng Lai;Qi Wang;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1763-1774
    • /
    • 2023
  • In this study, a series of flexible neutron/gamma shielding composites are fabricated through the doping of Gd2O3 into the matrix of SEBS with (MGd2O3: MSEBS) % from 5% to 100%. Neutron transmittance test shows an exponential attenuation with the increase of areal density of Gd, in which the transmittance T ranges from 59.1440% to 35.3026%, with standard deviation less than 2.2743%, mass attenuation coefficient 𝜇m from 0.3194 cm2/g to 0.4999 cm2/g, and half value layer-HVL value from 2.4530 mm to 1.1313 mm. Shielding efficiency of the Gd2O3/SEBS composites is basically improved in comparison with that of B4C/SEBS. The transmittance T, mass/linear attenuation coefficient 𝜇m and 𝜇, HVL and effective atomic number Zeff for the shielding of γ rays (39 keV, 59 keV and 122 keV) are measured and calculated with XCOM as well as MCX programs. Finally, plots of the three dimensional relationships between transmittance, doping amount and thickness are provided to the guidance for engineering shielding design. In summary, the Gd2O3/SEBS composite is proved to be an effective flexible neutron/low energy γ rays shielding material, which could be of potential applications in the field of nuclear technology and nuclear engineering.