DOI QR코드

DOI QR Code

An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys

  • Agar, O. (Karamanoglu Mehmetbey University, Department of Physics) ;
  • Sayyed, M.I. (University of Tabuk, Department of Physics, Faculty of Science) ;
  • Akman, F. (Bingol University, Vocational School of Technical Sciences, Department of Electronic Communication Technology) ;
  • Tekin, H.O. (Uskudar University, Vocational School of Health Services, Radiotherapy Department) ;
  • Kacal, M.R. (Giresun University, Arts and Sciences Faculty, Department of Physics)
  • Received : 2018.12.09
  • Accepted : 2018.12.20
  • Published : 2019.04.25

Abstract

A comprehensive study of photon interaction features has been made for some alloys containing Pd and Ag content to evaluate its possible use as alternative gamma radiations shielding material. The mass attenuation coefficient (${\mu}/{\rho}$) of the present alloys was measured at various photon energies between 81 keV-1333 keV utilizing HPGe detector. The measured ${\mu}/{\rho}$ values were compared to those of theoretical and computational (MCNPX code) results. The results exhibited that the ${\mu}/{\rho}$ values of the studied alloys are in the same line with results of WinXCOM software and MCNPX code results at all energies. Moreover, Pd75/Ag25 alloy sample has the maximum radiation protection efficiency (about 53% at 81 keV) and lowest half value layer, which shows that Pd75/Ag25 has superior gamma radiation shielding performance among the other compared alloys.

Keywords

References

  1. S. Kaur, A. Kaur, P.S. Singh, T. Singh, Scope of Pb-Sn binary alloys as gamma rays shielding material, Prog. Nucl. Energy (2016), https://doi.org/10.1016/j.pnucene.2016.08.022.
  2. H. Singh, J. Sharma, T. Singh, Extensive investigations of photon interaction properties for ZnxTe100-x alloys, Nucl. Eng. Technol. 50 (2018) 1364-1371, https://doi.org/10.1016/j.net.2018.08.001.
  3. T. Kaur, J. Sharma, T. Singh, Thickness optimization of Sn-Pb alloys for experimentally measuring mass attenuation coefficients, Nucl. Energy Technol. 3 (2017) 1-5, https://doi.org/10.1016/j.nucet.2017.02.001.
  4. B. Aygun, E. Sakar, T. Korkut, M.I. Sayyed, A. Karabulut, M.H.M. Zaid, Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications, Results Phys (2019), https://doi.org/10.1016/j.rinp.2018.11.038.
  5. A.E. Ersundu, M. Buyukyildiz, M. Celikbilek Ersundu, E. Sakar, M. Kurudirek, The heavy metal oxide glasses within the WO3-MoO3-TeO2system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy (2018), https://doi.org/10.1016/j.pnucene.2017.10.008.
  6. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3glasses, J. Alloy. Comp. 765 (2018) 451-458, https://doi.org/10.1016/j.jallcom.2018.06.240.
  7. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes, Mater. Chem. Phys. 213 (2018) 508-517, https://doi.org/10.1016/j.matchemphys.2018.04.019.
  8. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. (2018), https://doi.org/10.1016/j.radphyschem.2018.02.026.
  9. F. Akman, M.I. Sayyed, M.R. Kacal, H.O. Tekin, Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV-1333 keV, J. Alloy. Comp. (2019), https://doi.org/10.1016/j.jallcom.2018.09.177.
  10. V.P. Singh, N.M. Badiger, Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels, Radioprotection 48 (2013) 431-443, https://doi.org/10.1051/radiopro/2013067.
  11. I. Akkurt, Effective atomic numbers for Fe-Mn alloy using transmission experiment, Chin. Phys. Lett. 24 (2007) 2812-2814, https://doi.org/10.1088/0256-307X/24/10/027.
  12. I. Han, L. Demir, Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms (2009), https://doi.org/10.1016/j.nimb.2008.10.004.
  13. O. Ielli, S. Erzeneoglu, I.H. Karahan, G. Cankaya, Effective atomic numbers for CoCuNi alloys using transmission experiments, J. Quant. Spectrosc. Radiat. Transf. 91 (2005) 485-491, https://doi.org/10.1016/j.jqsrt.2004.07.006.
  14. J. Singh, H. Singh, J. Sharma, T. Singh, P.S. Singh, Fusible alloys: a potential candidate for gamma rays shield design, Prog. Nucl. Energy 106 (2018) 387-395, https://doi.org/10.1016/j.pnucene.2018.04.002.
  15. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy (2014), https://doi.org/10.1016/j.anucene.2013.10.003.
  16. X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, T. Yan, Microstructure, electromagnetic shielding effectiveness andmechanical properties of Mg-Zn-Cu-Zr alloys, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 197 (2015) 67-74, https://doi.org/10.1016/j.mseb.2015.03.012.
  17. H.C. Manjunatha, L. Seenappa, C. B.M, K.N. Sridhar, C. Hanumantharayappa, Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys, Appl. Radiat. Isot. (2018), https://doi.org/10.1016/j.apradiso.2018.05.014.
  18. L. Joska, M. Marek, J. Leitner, The mechanism of corrosion of palladium-silver binary alloys in artificial saliva, Biomaterials (2005), https://doi.org/10.1016/j.biomaterials.2004.05.018.
  19. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients, Int. J. Appl. Radiat. Isot. (1982), https://doi.org/10.1016/0020-708X(82)90248-4.
  20. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. (2004), https://doi.org/10.1016/j.radphyschem.2004.04.040.
  21. F. Akman, I.H. Gecibesler, I. Demirkol, A. Cetin, Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies, Can. J. Phys. (2018). https://doi.org/10.1139/cjp-2017-0923 (in press).
  22. F. Akman, R. Durak, M.F. Turhan, M.R. Kacal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, Appl. Radiat. Isot. (2015), https://doi.org/10.1016/j.apradiso.2015.04.001.
  23. M.I. Sayyed, S.A.M. Issa, M. Buyukyildiz, M. Dong, Determination of nuclear radiation shielding properties of some tellurite glasses using MCNP5 code, Radiat. Phys. Chem. (2018), https://doi.org/10.1016/j.radphyschem.2018.04.014.
  24. F. Akman, M.R. Kacal, F. Akman, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides, Can. J. Phys. (2017), https://doi.org/10.1139/cjp-2016-0811.
  25. T. Singh, A. Kaur, J. Sharma, P.S. Singh, Gamma rays' shielding parameters for some Pb-Cu binary alloys, Eng. Sci. Technol. an Int. J. (2018), https://doi.org/10.1016/j.jestch.2018.06.012.
  26. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3glasses, Radiat. Phys. Chem. 136 (2017) 50-53, https://doi.org/10.1016/j.radphyschem.2017.03.023.
  27. O. Agar, H.O. Tekin, M.I. Sayyed, M.E. Korkmaz, O. Culfa, C. Ertugay, Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral, Results Phys 12 (2019) 237-243, https://doi.org/10.1016/j.rinp.2018.11.053.
  28. O. Agar, Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral, Radiochim. Acta 106 (2018) 1009-1016, https://doi.org/10.1515/ract-2018-2981.
  29. Maestro, No Title, Www.Ortec-Online.Com/Download/Maest. (2018).
  30. O. Agar, I. Boztosun, C. Segebade, Multielemental analysis of some soils in Karaman by PAA using a cLINAC, Appl. Radiat. Isot. 122 (2017) 57-62, https://doi.org/10.1016/j.apradiso.2017.01.011.
  31. F. Akman, I.H. Gecibesler, M.I. Sayyed, S.A. Tijani, A.R. Tufekci, I. Demirtas, Determination of some useful radiation interaction parameters for waste foods, Nucl. Eng. Technol. (2018), https://doi.org/10.1016/j.net.2018.05.007.
  32. H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (2016) 1230-1236, https://doi.org/10.1016/j.net.2016.04.001.
  33. M.I. Sayyed, F. Akman, I.H. Gecibesler, H.O. Tekin, Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region, Nucl. Sci. Tech. 29 (2018), https://doi.org/10.1007/s41365-018-0475-0.
  34. O. Agar, Z.Y. Khattari, M.I. Sayyed, H.O. Tekin, S. Al-Omari, M. Maghrabi, M.H.M. Zaid, I.V. Kityk, Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code, Results Phys 12 (2019) 101-106, https://doi.org/10.1016/j.rinp.2018.11.054.
  35. M.I. Sayyed, M.G. Dong, H.O. Tekin, G. Lakshminarayana, M.A. Mahdi, Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code, Mater. Chem. Phys. 215 (2018) 183-202, https://doi.org/10.1016/j.matchemphys.2018.04.106.
  36. O. Agar, M.I. Sayyed, H.O. Tekin, K.M. Kaky, S.O. Baki, I. Kityk, An investigation on shielding properties of BaO , MoO3 and P2O5 based glasses using MCNPX code, Results Phys 12 (2019) 629-634, https://doi.org/10.1016/j.rinp.2018.12.003.
  37. S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, M.I. Sayyed, K. saber Shaaban, Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses, Curr. Appl. Phys. (2018), https://doi.org/10.1016/j.cap.2018.02.018.
  38. A.H. El-Kateb, R.A.M. Rizk, A.M. Abdul-Kader, Determination of atomic crosssections and effective atomic numbers for some alloys, Ann. Nucl. Energy (2000), https://doi.org/10.1016/S0306-4549(99)00121-8.

Cited by

  1. Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies vol.12, 2019, https://doi.org/10.1016/j.rinp.2019.01.094
  2. The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX code vol.12, 2019, https://doi.org/10.1016/j.rinp.2019.02.017
  3. Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code vol.13, 2019, https://doi.org/10.1016/j.rinp.2019.102199
  4. Structural, optical, and shielding investigations of TeO2-GeO2-ZnO-Li2O-Bi2O3 glass system for radiation protection applications vol.125, pp.6, 2019, https://doi.org/10.1007/s00339-019-2709-3
  5. Investigation of gamma-ray shielding properties of bismuth borotellurite glasses using MCNPX code and XCOM program vol.125, pp.6, 2019, https://doi.org/10.1007/s00339-019-2739-x
  6. Investigation of mechanical and radiation shielding features of heavy metal oxide based phosphate glasses for gamma radiation attenuation applications vol.30, pp.13, 2019, https://doi.org/10.1007/s10854-019-01572-x
  7. Structural, optical, and gamma-ray-sensing characterization of (35 − x) PbO-10 MgO-10Na2O-5 Fe2O3-10 BaO-(30 − x) B2O3 glasses vol.125, pp.8, 2019, https://doi.org/10.1007/s00339-019-2810-7
  8. Synthesis, physical, structural and shielding properties of newly developed B2O3-ZnO-PbO-Fe2O3 glasses using Geant4 code and WinXCOM program vol.125, pp.8, 2019, https://doi.org/10.1007/s00339-019-2831-2
  9. Gamma ray shielding behavior of Li2O-doped PbO-MoO3-B2O3 glass system vol.125, pp.10, 2019, https://doi.org/10.1007/s00339-019-2964-3
  10. Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses vol.125, pp.10, 2019, https://doi.org/10.1007/s00339-019-2976-z
  11. Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O vol.125, pp.10, 2019, https://doi.org/10.1007/s00339-019-3020-z
  12. Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2-B2O3-SrCl2-LiF-Bi2O3 vol.125, pp.12, 2019, https://doi.org/10.1007/s00339-019-3154-z
  13. Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Gea vol.1197, 2019, https://doi.org/10.1016/j.molstruc.2019.07.100
  14. Gamma radiation attenuation properties of tellurite glasses: A comparative study vol.51, pp.8, 2019, https://doi.org/10.1016/j.net.2019.06.014
  15. Modified halloysite minerals for radiation shielding purposes vol.13, pp.1, 2020, https://doi.org/10.1080/16878507.2019.1699680
  16. Shielding design for high-intensity Co-60 and Ir-192 gamma sources used in industrial radiography based on PHITS Monte Carlo simulations vol.135, pp.10, 2019, https://doi.org/10.1140/epjp/s13360-020-00797-8
  17. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety vol.10, pp.21, 2020, https://doi.org/10.3390/app10217680
  18. Evaluation of the gamma and neutron shielding properties of $$64\hbox {TeO}_2+15\hbox {ZnO}+(20-x)\hbox {CdO}+x\hbox {BaO}+1\mathrm{V}_2\hbox {O}_5$$ glass system using Geant4 simulation and Phy-X dat vol.94, pp.1, 2019, https://doi.org/10.1007/s12043-020-01972-3
  19. Impact of Bi 2 O 3 modifier concentration on barium–zincborate glasses: physical, structural, elastic, and radiation-shielding properties vol.136, pp.1, 2019, https://doi.org/10.1140/epjp/s13360-020-01056-6
  20. Effect of lead oxide on concrete density for radiation shielding purposes vol.1106, pp.1, 2021, https://doi.org/10.1088/1757-899x/1106/1/012011
  21. Radiation shielding properties of flexible liquid metal-GaIn alloy vol.135, 2019, https://doi.org/10.1016/j.pnucene.2021.103696
  22. Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites vol.135, 2019, https://doi.org/10.1016/j.pnucene.2021.103703
  23. Investigation on shielding properties of lead based alloys vol.137, 2019, https://doi.org/10.1016/j.pnucene.2021.103788
  24. Influence of PbO content on the gamma ray shielding properties of lead boro-telluro-phosphate glasses vol.185, 2019, https://doi.org/10.1016/j.radphyschem.2021.109516
  25. Numerical investigation on photon energy absorption parameters for some Bi-Sn-Zn alloys in wide energy region vol.95, pp.3, 2019, https://doi.org/10.1007/s12043-021-02137-6
  26. The X-Ray fluorescence parameters and radiation shielding efficiency of silver doped superconducting alloys vol.186, 2019, https://doi.org/10.1016/j.radphyschem.2021.109543
  27. Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations vol.13, pp.18, 2021, https://doi.org/10.3390/polym13183157
  28. Fabrication of new non-hazardous tungsten carbide epoxy resin bricks for low energy gamma shielding in nuclear medicine vol.5, pp.9, 2021, https://doi.org/10.1088/2399-6528/ac26de
  29. Radiation shielding features for various tellurium-based alloys: a comparative study vol.32, pp.22, 2019, https://doi.org/10.1007/s10854-021-07057-0
  30. Gamma radiation shielding performance of CuxAg(1-x)-alloys: Experimental, theoretical and simulation results vol.143, 2019, https://doi.org/10.1016/j.pnucene.2021.104036
  31. Effects of WO3 on Radiation Shielding Properties of WO3-TeO2 Binary Tellurite Glass System vol.222, pp.1, 2019, https://doi.org/10.1080/10584587.2021.1961522
  32. Refinement of optical/structural features and neutron/gamma-ray protecting capability of P2O5-Li2O-BaO phosphate glass system by adding Bi2O3 vol.145, 2022, https://doi.org/10.1016/j.pnucene.2021.104114
  33. Investigation of radiation shielding characteristic features of different wood species vol.192, 2019, https://doi.org/10.1016/j.radphyschem.2021.109927