Browse > Article
http://dx.doi.org/10.1016/j.net.2021.07.006

Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite  

Akman, Ferdi. (Bingol University, Vocational School of Social Sciences, Department of Property Protection and Security, Program of Occupational Health and Safety)
Ogul, H. (Department of Nuclear Engineering, Faculty of Engineering and Architecture, Sinop University)
Ozkan, I. (The Faculty of Engineering, Department of Materials Science and Engineering, Alparslan Turkes Science and Technology University)
Kacal, M.R. (Giresun University, Faculty of Arts and Sciences, Department of Physics)
Agar, O. (Karamanoglu Mehmetbey University, Department of Physics)
Polat, H. (Bingol University, Vocational School of Technical Sciences, Department of Architecture and Urban Planning)
Dilsiz, K. (Bingol University, Faculty of Arts and Sciences, Department of Physics)
Publication Information
Nuclear Engineering and Technology / v.54, no.1, 2022 , pp. 283-292 More about this Journal
Abstract
Advanced radiation applications have been widely used and extended to many fields. As a result of this fact, choosing an appropriate shielding material based on the radiation application has become vital. In this regard, the integration of elements into polymer composites has been investigated and contributed to the quantity and quality of radiation shielding materials. This study reports photon attenuation parameters and electromagnetic shielding effectiveness of a novel polymer composite prepared with a matrix reinforced with three different proportions (5, 10, and 15 wt%) of niobium content. Addition of Nb dopant improves both photon attenuation and electromagnetic shielding effectiveness for the investigated composites. Therefore, Nb(15%) polymer composite with highest concentration has been found to be the best absorber for ionizing and non-ionizing radiations. Consequently, the performed analyzes provide evidences that the prepared Nb-reinforced polymer composite could be effectively used as photon radiation attenuator and electromagnetic shielding material.
Keywords
Photon attenuation; Gamma-ray shielding; Electromagnetic shielding effectiveness; Polymer composite; Niobium;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N.I. Cherkashina, V.I. Pavlenko, A.V. Noskov, Radiation shielding properties of polyimide composite materials, Radiat. Phys. Chem. 159 (2019) 111-117, https://doi.org/10.1016/j.radphyschem.2019.02.041.   DOI
2 M.R. Kacal, F. Akman, M.I. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers, Nucl. Eng. Technol. 51 (3) (2019) 818-824, https://doi.org/10.1016/j.net.2018.11.011.   DOI
3 M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results, Results in Phys 11 (2018) 40-45, https://doi.org/10.1016/j.rinp.2018.08.029.   DOI
4 Z. Alsayed, M.S. Badawi, R. Awad, A.M. El-Khatib, A.A. Thabet, Investigation of g-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite, Phys. Scripta 95 (2020), https://doi.org/10.1088/1402-4896/ab9a6e, 085301.   DOI
5 M.M. El-Toony, Gh Eid, H.M. Algarni, T.F. Alhuwaymel, E.E. Abel-hady, Synthesis and characterisation of smart poly vinyl ester/Pb2O3 nanocomposite for gamma radiation shielding, Radiat. Phys. Chem. 168 (2020) 108536, https://doi.org/10.1016/j.radphyschem.2019.108536.   DOI
6 M.A. El-Sarraf, A. El-Sayaed Abdo, Insulating epoxy/barite and polyester/barite composites for radiation attenuation, Appl. Radiat. Isot. 79 (2013) 18-24, https://doi.org/10.1016/j.apradiso.2013.04.026.   DOI
7 C. Priyanka, M.M. Rekha, R. Mathappan, A review on biological effects of radiation on human health and its preventive measures, Int. J. Heal. Care Bio. Sci. (2020) 34-38. https://www.saap.org.in/journals/index.php/ijhcbs/article/view/18.
8 L. Hardell, C. Sage, Biological effects from electromagnetic field exposure and public exposure standards, Biomed. Pharmacother. 62 (2008) 104-109, https://doi.org/10.1016/j.biopha.2007.12.004.   DOI
9 S. Mukhopadhyay, A. Sanyal, A review of the effects of non-ionizing electromagnetic radiation on human body and exposure standards, EMC Journal 14 (2002) 35. N 1&2.
10 Z. Viskadourakis, K.C. Vasilopoulos, E.N. Economou, C.M. Soukoulis, G. Kenanakis, Electromagnetic shielding effectiveness of 3D printed polymer composites, Appl. Phys. A 123 (2017) 736, https://doi.org/10.1007/s00339-017-1353-z.   DOI
11 Y. Yim, K.Y. Rhee, S. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites, Compos. B Eng. 98 (2016) 120-125, https://doi.org/10.1016/j.compositesb.2016.04.061.   DOI
12 H. Mohan, Textbook of Pathology, Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, India, 2015.
13 C. Xia, J. Yu, S.Q. Shi, Y. Qiu, L. Cai, H.F. Wu, H. Ren, X. Nie, H. Zhang, Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance, Compos. B Eng. 114 (2017) 121-127, https://doi.org/10.1016/j.compositesb.2017.01.044.   DOI
14 K. Chou, K. Huang, Z. Shih, Effect of mixing process on electromagnetic interference shielding effectiveness of nickel/acrylonitrile-butadiene-styrene composites, J. Appl. Polym. Sci. 97 (1) (2005) 128-135, https://doi.org/10.1002/app.21740.   DOI
15 V. Bogush, T. Borbot'ko, N. Kolbun, L. Lynkov, Novel composite shielding materials for supression of microwave radiation, in: International Conference on Microwaves, Radar & Wireless Communications, Krakow, 2006, pp. 645-647, https://doi.org/10.1109/MIKON.2006.4345262.   DOI
16 J. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Math. Sci. Eng. R. 74 (7) (2013) 211-232, https://doi.org/10.1016/j.mser.2013.06.001.   DOI
17 L. Gerward, N. Guilbert, K. Jensen, H. Levring, WinXCom - a program for calculating X-ray attenuation coefficients Radiat, Phys. Chem. 71 (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040.   DOI
18 D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon 39 (2001) 279-285, https://doi.org/10.1016/S0008-6223(00)00184-6.   DOI
19 F. Ozkalayci, M.R. Kacal, O. Agar, H. Polat, A. Sharma, F. Akman, Lead (II) chloride effects on nuclear shielding capabilities of polymer composites, J. Phys. Chem. Solid. 145 (2020) 109543, https://doi.org/10.1016/j.jpcs.2020.109543.   DOI
20 C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel, E. Grulke, Polyethylene/boron nitride composites for space radiation shielding, J. Appl. Polym. Sci. 109 (4) (2008) 2529-2538, https://doi.org/10.1002/app.27949.   DOI
21 S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods B 266 (2008) 3906-3912, https://doi.org/10.1016/j.nimb.2008.06.034.   DOI
22 F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karatas, , Study of gamma radiation attenuation properties of some selected ternary alloys, J. Alloys Compd. 782 (2019) 315-322.   DOI
23 S.A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Company, New York, 1943.
24 H. Tong, G. Zhu, W. Mao, Development of EMI shielding materials characterized by low secondary electromagnetic radiation pollution, in: Second International Conference on Mechanic Automation and Control Engineering, IEEE, 2011, pp. 2075-2077.
25 I. Ozkan, A. Telli, The effects of metal type, number of layers, and hybrid yarn placement on the absorption and reflection properties in electromagnetic shielding of woven fabrics, J. Eng. Fibers Fabr. 14 (2019), https://doi.org/10.1177/1558925019860961.   DOI
26 I. Ozkan, Investigation of the technical and physical properties of metal composite 1×1 rib knitted fabrics, Ind. Textil. 71 (1) (2020) 41-49, https://doi.org/10.35530/IT.071.01.1693.   DOI
27 A. Sharma, M.I. Sayyed, O. Agar, M.R. Kacal, H. Polat, F. Akman, Photon-shielding performance of bismuth oxychloride-filled polyester concretes, Mater. Chem. Phys. 241 (2020) 122330.   DOI
28 M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M. I, Sayyed A comparative study on gamma photon shielding features of various germanate glass systems, Compos. B Eng. 165 (2019) 636-647.   DOI
29 M.R. Kacal, H. Polat, M. Oltulu, F. Akman, O. Agar, H.O. Tekin, Gamma Shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical, and simulation based study, Appl. Phys. A 126 (2020) 205, https://doi.org/10.1007/s00339-020-3382-2.   DOI
30 F. Akman, H. Ogul, M.R. Kacal, H. Polat, K. Dilsiz, M.F. Turhan, Impact of lead(II) iodide on radiation shielding properties of polyester composites, Appl. Phys. A 126 (2020) 301, https://doi.org/10.1007/s00339-020-03494-6.   DOI
31 C. Eke, O. Agar, C. Segebade, I. Boztosun, Attenuation properties of radiation shielding materials such as granite and marble against g-ray energies between 80 and 1350 keV, Radiochim. Acta 105 (10) (2017) 851-863.   DOI
32 M. Erdem, O. Baykara, M. Dogru, F. Kuluozturk, A novel shielding material prepared from solid waste containing lead for gamma ray, Radiat. Phys. Chem. 79 (2010) 917-922, https://doi.org/10.1016/j.radphyschem.2010.04.009.   DOI
33 R. Liang, W. Cheng, H. Xiao, M. Shi, Z. Tang, N. Wang, A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric, Textil. Res. J. 88 (9) (2018) 973-986, https://doi.org/10.1177/0040517517693980.   DOI
34 M. Esen, I. Ilhan, M. Karaaslan, R. Esen, Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces, Appl. Nanosci. 10 (2020) 551-561, https://doi.org/10.1007/s13204-019-01122-1.   DOI
35 M.I. Sayyed, F. Akman, A. Kumar, M.R. Kacal, Evaluation of radioprotection properties of some selected ceramic samples, Results in Phys 11 (2018) 1100-1104.   DOI
36 D. Chung, Materials for electromagnetic interference shielding, J. Mater. Eng. Perform. 9 (3) (2000) 350-354, https://doi.org/10.1361/105994900770346042.   DOI
37 F. Akman, O. Agar, M.R. Kacal, M. I, Sayyed Comparison of experimental and theoretical radiation shielding parameters of several environmentally friendly materials, Nucl. Sci. Tech. 30 (7) (2019) 110.   DOI
38 H.O. Tekin, O. Kilicoglu, E. Kavaz, E.E. Altunsoy, M. Almatari, O. Agar, M.I. Sayyed, M. I, The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX code, Results in Phys 12 (2019) 1797-1804.   DOI
39 A. El-Sayed, M.A.M. Ali, M.R. Ismail, Natural fibre high-density polyethylene and lead oxide composites for radiation shielding, Radiat. Phys. Chem. 66 (2003) 185-195, https://doi.org/10.1016/S0969-806X(02)00470-X.   DOI
40 S. Brzezinski, T. Rybicki, I. Karbownik, G. Malinowska, K. Sledzinska, Textile materials for electromagnetic field shielding made with the use of nano and micro-technology, Cent. Eur. J. Phys. 10 (5) (2012) 1190-1196, https://doi.org/10.2478/s11534-012-0094-z.   DOI
41 C. Zeitlin, S.B. Guetersloh, L.H. Heilbronn, J. Miller, Measurements of materials shielding properties with 1 GeV/nuc 56Fe, Nucl. Instrum. Methods Phys. Res., Sect. B 252 (2006) 308-318, https://doi.org/10.1016/j.nimb.2006.08.011.   DOI
42 K.B. Cheng, T.W. Cheng, R.N. Nadaraj, V.R.G. Dev, R. Neelakandan, Electromagnetic shielding effectiveness of the twill copper woven fabrics, J. Reinforc. Plast. Compos. 25 (7) (2006) 699-709, https://doi.org/10.1177/0731684406060578.   DOI
43 H.G. Ortlek, C. Cunesoglu, G. Okyay, Y. Turkoglu, Investigation of electro-magnetic shielding and comfort properties of single Jersey fabrics knitted from hybrid yarns containing metal wire, Tekst. Konfeksiyon 22 (2) (2012) 90-101.