• Title/Summary/Keyword: Gamma ray shielding

Search Result 118, Processing Time 0.024 seconds

Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose (피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석)

  • Jang, Dong-Gun;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

X-ray/gamma radiation shielding properties of Aluminium-Bariume-Zinc Oxide nanoparticles synthesized via low temperature solution combustion method

  • K.V. Sathish;K.N. Sridhar;L. Seenappa;H.C. Manjunatha;Y.S. Vidya;B. Chinnappa Reddy;S. Manjunatha;A.N. Santhosh;R. Munirathnam;Alfred Cecil Raj;P.S. Damodara Gupta;B.M. Sankarshan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1519-1526
    • /
    • 2023
  • For the first time Aluminium-BariumeZinc oxide nanocomposite (ZABONC) was synthesized by solution combustion method where calcination was carried out at low temperatures (600℃) to study the electromagnetic (EM) (X/γ) radiation shielding properties. Further for characterization purpose standard techniques like PXRD, SEM, UV-VISIBLE, FTIR were used to find phase purity, functional groups, surface morphology, and to do structural analysis and energy band gap determination. The PXRD pattern shows (hkl) planes corresponding to spinel cubic phase of ZnAl2O4, cubic Ba(NO3)2, α and γ phase of Al2O3 which clearly confirms the formation of complex nano composite. From SEM histogram mean size of nano particles was calculated and is in the order of 17 nm. Wood and Tauc's relation direct energy band gap calculation gives energy gap of 2.9 eV. In addition, EM (X/γ) shielding properties were measured and compared with the theoretical ones using standard procedures (NaI (Tl) detector and multi channel analyzer MCA). For energy above 356 keV the measured shielding parameters agree well with the theory, while below this value slight deviation is observed, due to the influence of atomic/crystallite size of the ZABONC. Hence synthesized ZABONC can be used as a shielding material in EM (X/γ) radiation shielding.

Feasibility Study on Development of a Fiber-Optic Dual Detector to Measure Beta- and Gamma-rays Simultaneously (베타/감마 동시 측정용 광섬유 이중 검출기의 개발을 위한 기초연구)

  • Hong, Seunghan;Shin, Sang Hun;Sim, Hyeok In;Kim, Seon Geun;Jeon, Hyesu;Jang, Jaeseok;Kim, Jaeseok;Kwon, Guwon;Jang, Kyoung Won;Yoo, Wook Jae;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.284-290
    • /
    • 2014
  • A fiber-optic beta/gamma dual detector system with two types of sensing probes was fabricated to detect the beta- and gamma-rays simultaneously. As scintillators of the sensing probe type 1, two different inorganic scintillators, $CaF_2(Eu)$ and LYSO(Ce) crystals, were used to obtain the each scintillating efficiency with respect to beta-and gamma-rays and the inherent energy spectra of radioactive isotopes. In the case of the sensing probe type 2, which is composed of two identical inorganic scintillators and a beta shielding material based on the lead, it could discriminate beta- and gamma-rays using a subtraction method. In conclusion, we demonstrated that the proposed fiber-optic beta/gamma dual detector could measure and discriminate beta- and gamma-rays using both energy spectroscopy and subtraction method.

Radiation Shielding Analysis for the X-ray Facility (X-선 발생장치 시설의 방사선 차폐 해석)

  • Kwon, Seog-Guen;Choi, Ho-Sin;Moon, Philip-S.;Yook, Jong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 1987
  • Radiation shielding analysis for a 6MeV X-ray facility was carried out. The primary and leakage radiation for the facility can be evaluated based on the methodology in NCRP No. 49 and 51. The present study deals with radiation scattering analysis for the outside and inside door of the facility based on the albedo concept. The calculated dose rates were compared with the results of MORSE-CG code calculation and the measured data, resulting in a good agreement, even though there existed some deviation for the inside door. These results can be utilized to the radiation shielding design of the medical and industrial X and gamma ray facilities, and to the safety evaluation of these facilities.

  • PDF

Aggregate Effects on γ-ray Shielding Characteristic and Compressive Strength of Concrete (콘크리트의 감마선 차폐특성 및 압축강도에 대한 골재의 영향)

  • Oh, Jeong-Hwan;Mun, Young-Bum;Lee, Jae-Hyung;Choi, Hyun-Kook;Choi, Sooseok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • We observed the ${\gamma}-ray$ shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of $0.371cm^{-1}$ from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a ${\gamma}-ray$ of $^{137}Cs$, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of $3,175kg{\cdot}m^{-3}$. Although the unit weight of the concrete with OSS and OSG was $3,052kg{\cdot}m^{-3}$, which was lower than the maximum unit weight condition by $123kg{\cdot}m^{-3}$, its attenuation coefficient was improved by $0.012cm^{-1}$. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced ${\gamma}-ray$ shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

DEVELOPMENT OF POINT KERNEL SHIELDING ANALYSIS COMPUTER PROGRAM IMPLEMENTING RECENT NUCLEAR DATA AND GRAPHIC USER INTERFACES

  • Kang, Sang-Ho;Lee, Seung-Gi;Chung, Chan-Young;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.215-224
    • /
    • 2001
  • In order to comply with revised national regulationson radiological protection and to implement recent nuclear data and dose conversion factors, KOPEC developed a new point kernel gamma and beta ray shielding analysis computer program. This new code, named VisualShield, adopted mass attenuation coefficient and buildup factors from recent ANSI/ANS standards and flux-to-dose conversion factors from the International Commission on Radiological Protection (ICRP) Publication 74 for estimation of effective/equivalent dose recommended in ICRP 60. VisualShieid utilizes graphical user interfaces and 3-D visualization of the geometric configuration for preparing input data sets and analyzing results, which leads users to error free processing with visual effects. Code validation and data analysis were performed by comparing the results of various calculations to the data outputs of previous programs such as MCNP 4B, ISOSHLD-II, QAD-CGGP, etc.

  • PDF

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu;Mengkun Li;Bowen Zou;Ming Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1966-1973
    • /
    • 2023
  • Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.

A Study on Dobe Distribution outside Co-60 $\gamma$ Ray ana 10MV X Ray Fields ($^{60}Co\;\gamma$선과 10MV X선의 조사면 밖의 선량분포에 관한 연구)

  • Kang, Wee-Saing;Huh, Seung-Jae;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.271-280
    • /
    • 1984
  • The peripheral dose, defined as the dose outside therapeutic photon fields, which is responsible for the functional damage of the critical organs, fetus, and radiation. induced carcinogenesis, has been investigated for $^{60}Co\;\gamma$ ray and 10 MV Xray. It was measured by silicon diode controlled by semiautomated water phantom without any shielding or with lead plate of HVL thickness put horizontally or vertically to shield stray radiations. Authors could obtain following results. 1. The peripheral dose was larger than $0.7\%$ of central axis maximum dose even at 20cm distance from field margin. That is clinically significant, so it should be reduced. 2. Even for square fields of 10 MV Xray, radial peripheral dose distribution did not coincide with transverse distribution, because of the position of collimator jaws. 3. Between surface and $d_m$, the peripheral dose distributions show a pattern of the dose distribution of electron beams and the maximum doss was approximately proportional to the length of a side of square field. 4. The peripheral doses depended on radiation quality, field size, distance from field margin and depth in water. Distance from field margin was the most important factor. 5. Except for near surface, the peripheral dose from phantom was approximately equal to that from therapy unit. 6. To reduce the surface dose outside fields, therapist should shield stray radiations from therapy unit by lead plate of at least one HVL for 10 MV X-ray and by bolus equivalent to tissue of 0.5cm thickness for $^{60}Co$. 7. To reduce the dose at depth deeper than $d_m$, it is desirable to shield stray radiations from therapy unit by lead.

  • PDF

Shielding Effectiveness of Magnetite Heavy Concrete on Cobalt-60 Gamma-rays

  • Lim, Yong-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-75
    • /
    • 1971
  • The gamma-ray shielding effects of magnetite concretes have been measured using a broad beam Co-60 gamma-ray source. Mathematical formulae for a trans-mission ratio-to-shield thickness relation were derived from the attenuation curve obtained experimentally and are I (x) = I (ο) exp(-$\mu$X) exp(1.03$\times$10$^{-1}$ X-3.38$\times$10$^{-3}$ X$^2$+5.29$\times$10$^{-5}$ X$^3$) when X< 20 cm, I (x) =I (ο) exp(-$\mu$X) exp(4.66$\times$10$^{-2}$ X+2.12$\times$10$^{-1}$ ) when X>20 cm. Here I (x) is radiation intensity after passing through a thickness X of absorber, I(o) is the initial radiation intensity, $\mu$ is the linear attenuation coefficient of magnetite concrete and is given by (0.0532$\rho$+ 0.0083)$^{4)}$ $cm^{-1}$ / in accordance with an earlier study, and X is the thickness of absorber. In addition, a model shield which is a rectangular magnetite concrete box with walls of 8cm thickness walls and internal demensions of 40$\times$40$\times$40 cm was constructed and its shielding effect has been measured. The emergent radiation flux appears to be greater with this configuration than with a slab shield of equal thickness.

  • PDF