• Title/Summary/Keyword: Galois Field(GF)

Search Result 49, Processing Time 0.026 seconds

Reed Solomon CODEC Design For Digital Audio/Video, Communication Electronic Devices (디지털 오디오/비디오, 통신용 전자기기를 위한 Reed Solomon 복부호기 설계에 대해)

  • An Hyeong-Keon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.13-20
    • /
    • 2005
  • For Modern Consumer and Communication Elecronic Devices, Always Error Protecting HW and SW is used. The Core is RS(Reed Solomon) Codec in Galois Field GF($2^8$). Here New 2 to 3 Symbol RS Decoder Design and Encoder design Method using Normalized error position Value is described. Examples are given to show the methods are working well.

Design of Multivalued Logic Circuits using $I^2$L with ROM Structures (ROM구조의 $I^2$L에 의한 다치논리회로의 설계)

  • 이종원;성현경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.1
    • /
    • pp.42-47
    • /
    • 1985
  • An efficient logic circuit for realizing the function which has output of 1 diagonaly and design for multivalued logic circuit using with ROM structure which has two output at once are presented. The circuits presented are suited for the circuit design of a symmetric multivalued truth tables and the circuit design of multivalued truth tables with many independent variables. Also, they are applied to the multivalued truth tables of Galois field(GF).

  • PDF

Design of an Efficient User Authentication Protocol Using subgroup of Galois Field (유한체의 부분군을 이용한 효율적인 사용자 인증 프로로콜 설계)

  • 정경숙
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 2004
  • If the protocol has fast operations and short key length, it can be efficient user authentication protocol Lenstra and Verheul proposed XTR. XTR have short key length and fast computing speed. Therefore, this can be used usefully in complex arithmetic. In this paper, to design efficient user authentication protocol we used a subgroup of Galois Field to problem domain. Proposed protocol does not use GF($p^6$) that is existent finite field, and uses GF($p^2$) that is subgroup and solves problem. XTR-ElGamal based user authentication protocol reduced bit number that is required when exchange key by doing with upside. Also, Proposed protocol provided easy calculation and execution by reducing required overhead when calculate. In this paper, we designed authentication protocol that is required to do user authentication.

  • PDF

VLSI Design of an Improved Structure of a $GF(2^m)$ Divider (확장성에 유리한 병렬 알고리즘 방식에 기반한 $GF(2^m)$나눗셈기의 VLSI 설계)

  • Moon San-Gook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.633-637
    • /
    • 2005
  • In this contribution, we developed and improved an existing GF (Galois field) dividing algorithm by suggesting a novel architecture for a finite field divider, which is frequently required for the error correction applications and the security-related applications such as the Reed-Solomon code, elliptic curve encryption/ decryption, is proposed. We utilized the VHDL language to verify the design methodology, and implemented the architecture on an FPGA chip. We suggested the n-bit lookup table method to obtain the throughput of 2m/n cycles, where m is the order of the division polynomial and n is the number of the most significant lookup-bits. By doing this, we extracted the advantages in achieving both high-throughput and less cost of the gate areaon the chip. A pilot FPGA chip was implemented with the case of m=4, n=2. We successfully utilized the Altera's EP20K30ETC144-1 to exhibit the maximum operating clock frequency of 77 MHz.

Cell array multiplier in GF(p$^{m}$ ) using Current mode CMOS (전류모드 CMOS를 이용한 GF(P$^{m}$ )상의 셀 배열 승산기)

  • 최재석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.102-109
    • /
    • 2001
  • In this paper, a new multiplication algorithm which describes the methods of constructing a multiplierover GF(p$^{m}$ ) was presented. For the multiplication of two elements in the finite field, the multiplication formula was derived. Multiplier structures which can be constructed by this formula were considered as well. For example, both GF(3) multiplication module and GF(3) addition module were realized by current-mode CMOS technology. By using these operation modules the basic cell used in GF(3$^{m}$ ) multiplier was realized and verified by SPICE simulation tool. Proposed multipliers consisted of regular interconnection of simple cells use regular cellular arrays. So they are simply expansible for the multiplication of two elements in the finite field increasing the degree m.

  • PDF

Syntheses and realization of Quaternary Galois Field Sum-Of-Product(QGFSOP) expressed 1-variable functions Permutational Literals (치환리터럴에 의한 Quaternary Galois Field Sum-Of-Product(QGFSOP)형 1-변수 함수의 합성과 실현)

  • Park, Dong-Young;Kim, Baek-Ki;Seong, Hyeun-Kyeong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.710-717
    • /
    • 2010
  • Even though there are 256 possible 1-qudit(1-variable quantum digit) functions in quaternary logic, the most useful functions are 4!=24 ones capable of representing in QGFSOP expressions by possible permuting of 0,1,2, and 3. In this paper, we propose a permutational literal(PL) representation and a QPL(Quaternary PL) gate which use the operands of a multiplicand A and an augend D in $Ax^C$+D(GF4) operation as a control variable of multi-cascaded PLs. And we also present new PL synthesis algorithms to synthesize QGFSOP expressed 24 (1-qudit) functions by applying three PL operators as ab(mutual permutation), + D(addition), and XA (multiplication). Finally architectures, circuits, and a CMOS implementation to realize proposed PL synthesis algorithms for $Ax^C$+D(GF4) functions are presented.

An Efficient Algorithm for Computing Multiplicative Inverses in GF($2^m$) Using Optimal Normal Bases (최적 정규기저를 이용한 효율적인 역수연산 알고리즘에 관한 연구)

  • 윤석웅;유형선
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.1
    • /
    • pp.113-119
    • /
    • 2003
  • This paper proposes a new multiplicative inverse algorithm for the Galois field GF (2/sup m/) whose elements are represented by optimal normal basis type Ⅱ. One advantage of the normal basis is that the squaring of an element is computed by a cyclic shift of the binary representation. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. The new algorithm is more suitable for implementation than conventional algorithm.

  • PDF

Improved Modular Inversion over GF(p)

  • Choi, Jong-Hwa;Kim, Yong-Dae;Ahn, Young-Il;You, Young-Gap
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.40-43
    • /
    • 2007
  • This paper proposed a new modular inverse algorithm based on the right-shifting binary Euclidean algorithm. For an n-bit numbers, the number of operations for the proposed algorithm is reduced about 61.3% less than the classical binary extended Euclidean algorithm. The proposed algorithm implementation shows substantial reduction in computation time over Galois field GF(p).

A Cryptographic Processor Supporting ARIA/AES-based GCM Authenticated Encryption (ARIA/AES 기반 GCM 인증암호를 지원하는 암호 프로세서)

  • Sung, Byung-Yoon;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2018
  • This paper describes a lightweight implementation of a cryptographic processor supporting GCM (Galois/Counter Mode) authenticated encryption (AE) that is based on the two block cipher algorithms of ARIA and AES. It also provides five modes of operation (ECB, CBC, OFB, CFB, CTR) for confidentiality as well as the key lengths of 128-bit and 256-bit. The ARIA and AES are integrated into a single hardware structure, which is based on their algorithm characteristics, and a $128{\times}12-b$ partially parallel GF (Galois field) multiplier is adopted to efficiently perform concurrent processing of CTR encryption and GHASH operation to achieve overall performance optimization. The hardware operation of the ARIA/AES-GCM AE processor was verified by FPGA implementation, and it occupied 60,800 gate equivalents (GEs) with a 180 nm CMOS cell library. The estimated throughput with the maximum clock frequency of 95 MHz are 1,105 Mbps and 810 Mbps in AES mode, 935 Mbps and 715 Mbps in ARIA mode, and 138~184 Mbps in GCM AE mode according to the key length.

A Construction Theory of Sequential Multiple-Valued Logic Circuit by Matrices Operations (행열연산에 의한 순서다치논리회로 구성이론)

  • Kim, Heung Soo;Kang, Sung Su
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.460-465
    • /
    • 1986
  • In this paper, a method for constructing of the sequential multiple-valued logic circuits over Galois field GF(px) is proposed. First, we derive the Talyor series over Galois field and the unique matrices which accords with the number of the element over the finite field, and we constdruct sequential multiple-valued logic circuits using these matrices. Computational procedure for traditional polynomial expansion can be reduced by using this method. Also, single and multi-input circuits can be easily implemented.

  • PDF