• Title/Summary/Keyword: Galois

Search Result 199, Processing Time 0.024 seconds

THE INVERSE GALOIS PROBLEM

  • MATYSIAK, LUKASZ
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.765-767
    • /
    • 2022
  • The inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers. This problem, first posed in the early 19th century, is unsolved. In other words, we consider a pair - the group G and the field K. The question is whether there is an extension field L of K such that G is the Galois group of L. In this paper we present the proof that any group G is a Galois group of any field extension. In other words, we only consider the group G. And we present the solution to the inverse Galois problem.

Derivation of Galois Switching Functions by Lagrange's Interpolation Method (Lagrange 보간법에 의한 Galois 스윗칭함수 구성)

  • 김흥수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.5
    • /
    • pp.29-33
    • /
    • 1978
  • In this paper, the properties of Galois fields defined over any finite field are analysed to derive Galois switching functions and the arithmetic operation methods over any finite field are showed. The polynomial expansions over finite fields by Lagrange's interpolation method are derived and proved. The results are applied to multivalued single variable logic networks.

  • PDF

RELATING GALOIS POINTS TO WEAK GALOIS WEIERSTRASS POINTS THROUGH DOUBLE COVERINGS OF CURVES

  • Komeda, Jiryo;Takahashi, Takeshi
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.69-86
    • /
    • 2017
  • The point $P{\in}{\mathbb{P}}^2$ is referred to as a Galois point for a nonsingular plane algebraic curve C if the projection ${\pi}_P:C{\rightarrow}{\mathbb{P}}^1$ from P is a Galois covering. In contrast, the point $P^{\prime}{\in}C^{\prime}$ is referred to as a weak Galois Weierstrass point of a nonsingular algebraic curve C' if P' is a Weierstrass point of C' and a total ramification point of some Galois covering $f:C^{\prime}{\rightarrow}{\mathbb{P}}^1$. In this paper, we discuss the following phenomena. For a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$, if there exists a common ramification point of ${\pi}_P$ and ${\varphi}$, then there exists a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with its Weierstrass semigroup such that H(P') = or , which is a semigroup generated by two positive integers r and 2r + 1 or 2r - 1, such that P' is a branch point of ${\varphi}$. Conversely, for a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with H(P') = or , there exists a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$ such that P' is a branch point of ${\varphi}$.

GALOIS COVERINGS AND JACOBI VARIETIES OF COMPACT RIEMANN SURFACES

  • Namba, Makoto
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.263-286
    • /
    • 2016
  • We discuss relations between Galois coverings of compact Riemann surfaces and their Jacobi varieties. We prove a theorem of a kind of Galois correspondence for Abelian subvarieties of Jacobi varieties. We also prove a theorem on the sets of points in Jacobi varieties fixed by Galois group actions.

GAUSS SUMS OVER GALOIS RINGS OF CHARACTERISTIC 4

  • Oh, Yunchang;Oh, Heung-Joon
    • Korean Journal of Mathematics
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • In this paper, we define and study Gauss sums over Galois rings of characteristic 4. In particular, we give the absolute value of Gauss sum over Galois rings of characteristic 4.

  • PDF

Fuzzy Connections and Relations in Complete Residuated Lattices

  • Kim, Yong Chan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.345-351
    • /
    • 2013
  • In this paper, we investigate the properties of fuzzy Galois (dual Galois, residuated, and dual residuated) connections in a complete residuated lattice L. We give their examples. In particular, we study fuzzy Galois (dual Galois, residuated, dual residuated) connections induced by L-fuzzy relations.

REMARKS ON GAUSS SUMS OVER GALOIS RINGS

  • Kwon, Tae Ryong;Yoo, Won Sok
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2009
  • The Galois ring is a finite extension of the ring of integers modulo a prime power. We consider characters on Galois rings. In analogy with finite fields, we investigate complete Gauss sums over Galois rings. In particular, we analyze [1, Proposition 3] and give some lemmas related to [1, Proposition 3].

  • PDF

THE GAUSS SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho;Jun, Sang Pyo
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.519-535
    • /
    • 2018
  • Let ${\mathcal{R}}$ denote the Galois ring of characteristic $p^n$, where p is a prime. In this paper, we investigate the elementary properties of Gauss sums over ${\mathcal{R}}$ in accordance with conditions of characters of Galois rings, and we restate results for Gauss sums in [1, 2, 3, 7, 12, 13]. Also, we compute the modulus of the Gauss sums.

LINEAR AUTOMORPHISMS OF SMOOTH HYPERSURFACES GIVING GALOIS POINTS

  • Hayashi, Taro
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.617-635
    • /
    • 2021
  • Let X be a smooth hypersurface X of degree d ≥ 4 in a projective space ℙn+1. We consider a projection of X from p ∈ ℙn+1 to a plane H ≅ ℙn. This projection induces an extension of function fields ℂ(X)/ℂ(ℙn). The point p is called a Galois point if the extension is Galois. In this paper, we will give necessary and sufficient conditions for X to have Galois points by using linear automorphisms.