# GALOIS COVERINGS AND JACOBI VARIETIES OF COMPACT RIEMANN SURFACES 

Makoto Namba<br>Dedicated to Professor Changho Keem on his 60th birthday


#### Abstract

We discuss relations between Galois coverings of compact Riemann surfaces and their Jacobi varieties. We prove a theorem of a kind of Galois correspondence for Abelian subvarieties of Jacobi varieties We also prove a theorem on the sets of points in Jacobi varieties fixed by Galois group actions.


## 1. Introduction

Let $\pi: X \rightarrow Y$ be a holomorphic map of a compact Riemann surface $X$ of genus $g=g(X)$ onto a compact Riemann surface $Y$ of genus $g_{0}=g(Y)$. $\pi$ is called a Galois covering if there is a biholomorphic map $\hat{\pi}: X / G \rightarrow Y$ such that $\pi=\hat{\pi} \circ p r$, where $G$ is a finite subgroup of the automorphism group $\operatorname{Aut}(X)$ of $X$ and $p r: X \rightarrow X / G$ is the canonical projection. $G$ is called the Galois group of $\pi$. (We sometimes identify $Y$ with $X / G$ through $\hat{\pi}$.)

The purpose of this paper is to discuss relations between the Galois covering $\pi$ and the Jacobi varieties $J(X)$ and $J(Y)$ of $X$ and $Y$, respectively. After discussing properties of an Abelian subvariety $A(\pi)$ of $J(X)$ which is isogeneous to $J(Y)$ and each of whose points is fixed by the action of $G$, we prove a theorem of a kind of Galois correspondence (Theorem 3) for Abelian subvarieties of $J(X)$.

Next, we discuss existence or non-existence of invariant linear systems on $X$ under the action of $G$, using Abel-Jacobi maps $\Phi_{m}: S^{m}(X) \rightarrow J(X)$, where $S^{m}(X)$ is the $m$-th symmetric product of $X$. For a fixed positive integer $m$, the action of $G$ on $J(X)$ must be regarded as not linear action but affine action in order to be equivariant with the action on $S^{m}(X)$ with respect to $\Phi_{m}$. So, we denote this action as $(G, m)$-action. We show that there is a positive integer $m_{0}$ such that the set $\operatorname{Fix}(J(X), G, m)$ of $(G, m)$-fixed points in $J(X)$ is nonempty if and only if $m$ is divisible by $m_{0}$. Moreover, in this case, the number of

Received November 17, 2014; Revised May 4, 2015.
2010 Mathematics Subject Classification. Primary 14H7; Secondary 14H30.
Key words and phrases. compact Riemann surface, Galois covering, Jacobi variety.
the points of $\operatorname{Fix}_{0}(J(X), G, m)$ (the set of points of $\operatorname{Fix}(J(X), G, m)$, which is orthogonal to $A(\pi)$ ) is finite and constant for all $m$ divisible by $m_{0}$ (Theorem 4). Finally, we give some examples for determinations of existence or non-existence of invariant linear systems using Theorem 4.

## 2. Some linear projections

For a compact Riemann surface $X$ of genus $g$, let $H^{0}\left(X, K_{X}\right)$ be the complex vector space of dimension $g$ of holomorphic differentials on $X$. Let $\left\{\omega_{1}, \ldots, \omega_{g}\right\}$ be a basis of $H^{0}\left(X, K_{X}\right)$. Then the Jacobi variety $J(X)$ of $X$ is defined to be the complex torus $\mathbb{C}^{g} / \Gamma_{X}$, where $\Gamma_{X}$ is the additive group of period vectors:

$$
\Gamma_{X}=\left\{\left(\int_{\gamma} \omega_{1}, \ldots, \int_{\gamma} \omega_{g}\right) \mid \gamma \in H_{1}(X, \mathbb{Z})\right\} .
$$

$J(X)$ is then an Abelian variety with the principal polarization given by its symplectic basis of the integral 1-st homology group $H_{1}(X, \mathbb{Z})$. $J(X)$ is isomorphic to the Picard variety $\operatorname{Pic}^{0}(X)$ of $X$, where

$$
\begin{aligned}
\operatorname{Pic}^{0}(X) & =\operatorname{Div}^{0}(X) /\{\text { principal divisors }\} \\
\operatorname{Div}^{0}(X) & =\{D \mid D \text { is a divisor of } X \text { with } \operatorname{deg}(D)=0\}
\end{aligned}
$$

The isomorphism $\operatorname{Pic}^{0}(X) \cong J(X)$ is given by

$$
D(\bmod (\text { principal divisors })) \longmapsto \sum_{i=1}^{m} \int_{q_{i}}^{p_{i}} \Omega\left(\bmod \Gamma_{X}\right)
$$

via Abel's theorem, where $D=p_{1}+\cdots+p_{m}-q_{1}-\cdots-q_{m}$ and $\Omega=\left(\omega_{1}, \ldots, \omega_{g}\right)$.
Now let $\pi: X \rightarrow Y=X / G$ be a Galois covering of a compact Riemann surface $X$ of genus $g=g(X)$ onto a compact Riemann surface $Y=X / G$ of genus $g_{0}=g(Y)$ with the Galois group $G$, which is a finite subgroup of $\operatorname{Aut}(X)$. Henceforth, we assume

$$
g \geq 2
$$

We put

$$
G=\left\{\varphi_{1}=e, \ldots, \varphi_{d}\right\} \quad(d \text { is the order of } G) .
$$

For any $\varphi \in G$, the pull-back $\varphi^{*}$ is a linear isomorphism of the $g$-dimensional complex vector space $H^{0}\left(X, K_{X}\right)$ of holomorphic differentials on $X$. We define a linear map $M$ of $H^{0}\left(X, K_{X}\right)$ into itself by

$$
M=\frac{1}{d}\left(\varphi_{1}^{*}+\cdots+\varphi_{d}^{*}\right) .
$$

Then we can easily show the following properties:

$$
\begin{align*}
& M \circ \varphi^{*}=\varphi^{*} \circ M=M \text { for all } \varphi \in G  \tag{1}\\
& M \circ M=M \tag{2}
\end{align*}
$$

The last equality means that $M$ is a linear projection, so $M^{\prime}=I-M(I$ : the identity map) is also a linear projection. Thus $H^{0}\left(X, K_{X}\right)$ is decomposed into the direct sum:

$$
H^{0}\left(X, K_{X}\right)=M\left(H^{0}\left(X, K_{X}\right)\right) \oplus M^{\prime}\left(H^{0}\left(X, K_{X}\right)\right)
$$

Lemma 1. (i)

$$
\begin{aligned}
M\left(H^{0}\left(X, K_{X}\right)\right) & =\left\{\omega \in H^{0}\left(X, K_{X}\right) \mid M(\omega)=\omega\right\} \\
& =\left\{\omega \in H^{0}\left(X, K_{X}\right) \mid \varphi^{*}(\omega)=\omega \text { for all } \varphi \in G\right\} \\
& =\left\{\pi^{*} \eta \mid \eta \in H^{0}\left(Y, K_{Y}\right)\right\} .
\end{aligned}
$$

(ii) $M^{\prime}\left(H^{0}\left(X, K_{X}\right)\right)=\operatorname{Ker}(M)$, and for every $\varphi \in G$, $\varphi^{*}$ acts linearly on $M^{\prime}\left(H^{0}\left(X, K_{X}\right)\right)$.
Proof. The assertion in (ii) is trivial. We prove (i). The first and the second equalities in (i) follow from the properties of $M$ in (1) and (2). We prove the third equality.

It is clear that the pull-back over $\pi$ of a holomorphic differential on $Y$ is $G$-invariant. Conversely, we show that a $G$-invariant holomorphic differential $\omega$ can be written as the pull-back over $\pi$ of a holomorphic differential on $Y$.

For any point $p$ in $X$, there is a local coordinate $z$ around $p$ with $z(p)=0$ and a local coordinate $w$ around $q=\pi(p)$ with $w(q)=0$ such that $\pi$ is locally written as

$$
\begin{equation*}
\pi: z \longmapsto w=z^{e} \tag{3}
\end{equation*}
$$

where $e$ is a positive integer. ( $e \geq 2$ if and only if $p$ is a ramification point of $\pi$.) $\omega$ can be locally written as

$$
\omega=f(z) d z
$$

where $f(z)$ is a holomorphic function around $p$.
If $e$ in (3) is 1 , then the pull-back over $\pi$ of the holomorphic differential $f(w) d w$ defined locally around $q$ is $\omega$.

Suppose $e$ in (3) is greater than or equal to 2 . We expand $f(z)$ into the power series of $z$ as follows:

$$
f(z)=c_{0}+c_{1} z+\cdots
$$

Let $\zeta=\exp (2 \pi \sqrt{-1} / e)$ be a primitive root of 1 . Then there is an element $\varphi$ in $G$ such that $\varphi$ is locally written as

$$
\varphi(z)=\zeta z
$$

because $z$ and $\zeta z$ are in the same fiber of $\pi$, while $G$ acts transitively on every fiber of $\pi$. Now, by the assumption on $\omega$, we have $\varphi^{*} \omega=\omega$, that is, locally,

$$
\begin{equation*}
f(\zeta z) d(\zeta z)=f(z) d z \tag{4}
\end{equation*}
$$

The left hand side of (4) can be written as

$$
\left(\zeta c_{0}+(\zeta)^{2} c_{1} z+\cdots+(\zeta)^{e} c_{e-1} z^{e-1}+(\zeta)^{e+1} c_{e} z^{e}+\cdots\right) d z
$$

Hence (4) implies

$$
c_{0}=0, \ldots, c_{e-2}=0, c_{e}=0, \ldots
$$

Hence

$$
\omega=f(z) d z=\left(c_{e-1} z^{e-1}+c_{2 e-1} z^{2 e-1}+\cdots\right) d z=\pi^{*}(g(w) d w)
$$

where $g(w)$ is a holomorphic function around $q$ whose power series expansion with respect to $w$ is

$$
g(w)=\frac{1}{e} c_{e-1}+\frac{1}{e} c_{2 e-1} w+\cdots .
$$

The locally defined holomorphic differentials $f(w) d w$ (for $e=1$ ) and $g(w) d w$ (for $e \geq 2$ ) can be patched up and define a global holomorphic differential $\eta$ on $Y$ such that $\pi^{*} \eta=\omega$.

From Lemma 1, we have:
Theorem 1. $g_{0}=g(Y)$ vanishes if and only if $\varphi_{1}^{*} \omega+\cdots+\varphi_{d}^{*} \omega=0$ for all $\omega \in H^{0}\left(X, K_{X}\right)$, where $G=\left\{\varphi_{1}, \ldots, \varphi_{d}\right\}$.

Let $\eta_{1}, \ldots, \eta_{g_{0}}$ be a basis of $H^{0}\left(Y, K_{Y}\right)$ and let $\omega_{1}, \ldots, \omega_{l}$ be a basis of $M^{\prime}\left(H^{0}\left(X, K_{X}\right)\right)$. $\left(l=g-g_{0}\right)$. In the sequel, we use the following basis of $H^{0}\left(X, K_{X}\right)$ :

$$
\left\{\pi^{*} \eta_{1}, \ldots, \pi^{*} \eta_{g_{0}}, \omega_{1}, \ldots, \omega_{l}\right\}
$$

Then every point in the Jacobi variety $J(X)$ can be written as

$$
\begin{equation*}
(z, w)\left(\bmod \Gamma_{X}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
z & =\left(z_{1}, \ldots, z_{g_{0}}\right) \in \mathbb{C}^{g_{0}} \\
w & =\left(w_{1}, \ldots, w_{l}\right) \in \mathbb{C}^{l}
\end{aligned}
$$

We sometimes use the 'coordinate' in (5) for a point of $J(X)$. We put

$$
\Omega=\left(\pi^{*} \eta_{1}, \ldots, \pi^{*} \eta_{g_{0}}, \omega_{1}, \ldots, \omega_{l}\right) .
$$

Every $\varphi \in G$ induces an automorphism $\varphi_{*}$ of $J(X)=\mathbb{C}^{g} / \Gamma_{X}$ :
$\sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} \Omega\left(\bmod \Gamma_{X}\right) \longmapsto \sum_{j=1}^{m} \int_{\varphi\left(q_{j}\right)}^{\varphi\left(p_{j}\right)} \Omega\left(\bmod \Gamma_{X}\right)=\sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} \varphi^{*}(\Omega)\left(\bmod \Gamma_{X}\right)$.
Hence we may regard $\varphi_{*}$ as a linear transformation on $\mathbb{C}^{g}$, which induces the above $\varphi_{*}: J(X) \rightarrow J(X)$, as follows:

$$
\begin{equation*}
\varphi_{*}: \sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} \Omega \longmapsto \sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} \varphi^{*} \Omega . \tag{6}
\end{equation*}
$$

(We remark that $\varphi_{*}$ maps $\Gamma_{X}$ onto itself, for

$$
\varphi_{*}: \int_{\gamma} \Omega \longmapsto \int_{\varphi_{*}(\gamma)} \Omega \quad\left(=\int_{\gamma} \varphi^{*} \Omega\right)
$$

where $\gamma \in H_{1}(X, \mathbb{Z})$.)
We may thus regard $\varphi_{*}$ as a linear transformation on $\mathbb{C}^{g}$, using the coordinates $(z, w)$ as follows:

$$
\begin{equation*}
\varphi_{*}:(z, w) \longmapsto\left(z, w B_{\varphi}\right) \tag{7}
\end{equation*}
$$

where $B_{\varphi}$ is an $(l \times l)$-non-singular matrix defined by

$$
\varphi^{*}\left(\omega_{1}, \ldots, \omega_{l}\right)=\left(\omega_{1}, \ldots, \omega_{l}\right) B_{\varphi}
$$

(see (ii) of Lemma 1).
We define linear maps $L$ and $L^{\prime}$ of $\mathbb{C}^{g}$ into itself as follows:

$$
\begin{aligned}
L & =\frac{1}{d}\left(\left(\varphi_{1}\right)_{*}+\cdots+\left(\varphi_{d}\right)_{*}\right) \\
L^{\prime} & =I-L
\end{aligned}
$$

Then $L$ satisfies similar properties to $M$ in (1) and (2):

$$
\begin{aligned}
L \circ \varphi_{*} & =\varphi_{*} \circ L=L \text { for all } \varphi \in G \\
L \circ L & =L
\end{aligned}
$$

Thus $L$ and $L^{\prime}$ are linear projections of $\mathbb{C}^{g}$. In fact, they are linear projections as in (i) of the following lemma:

Lemma 2. (i) $L:(z, w) \longmapsto(z, 0), L^{\prime}:(z, w) \longmapsto(0, w)$.
(ii) $\varphi_{*}(z, w)=(z, w)$ for all $\varphi \in G$ if and only if $w=0$.
(iii) $B_{\varphi_{1}}+\cdots+B_{\varphi_{d}}=0$.

Proof. (i) By (6), we have

$$
\begin{aligned}
L=\frac{1}{d} \sum_{k=1}^{d}\left(\varphi_{k}\right)_{*}: \sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} \Omega \longmapsto \sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} M(\Omega) & =\sum_{j=1}^{m} \int_{q_{j}}^{p_{j}}\left(\pi^{*} \Omega_{0}, 0\right) \\
& =\left(\sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} \pi^{*} \Omega_{0}, 0\right)
\end{aligned}
$$

Hence $L:(z, w) \longmapsto(z, 0)$ and so $L^{\prime}:(z, w) \longmapsto(0, w)$.
(ii) $\varphi_{*}(z, 0)=\left(z, 0 B_{\varphi}\right)=(z, 0)$. Conversely, assume that $\varphi_{*}(z, w)=(z, w)$ for all $\varphi \in G$. Then $L(z, w)=(z, w)$. The left hand side is equal to $(z, 0)$ by (i). Hence $w=0$.
(iii) follows from (i) and (7).

The linear projections $L$ and $L$ ' can be regarded as 'dual' operators to $M$ and $M^{\prime}$ in the following sense: The real 1-st homology group $H_{1}(X, \mathbb{R})$ of $X$
can be considered as the dual vector space over $\mathbb{R}$ to $H^{0}\left(X, K_{X}\right)$ (which is regarded as a real vector space in this time), by the pairing

$$
\begin{equation*}
(\gamma, \omega) \in H_{1}(X, \mathbb{R}) \times H^{0}\left(X, K_{X}\right) \longmapsto \operatorname{Re}\left(\int_{\gamma} \omega\right)=\int_{\gamma} \operatorname{Re}(\omega) \in \mathbb{R} \tag{8}
\end{equation*}
$$

where $\operatorname{Re}\left(\int_{\gamma} \omega\right)$ (resp. $\left.\operatorname{Re}(\omega)\right)$ is the real part of $\int_{\gamma} \omega$ (resp. $\omega$ ). This is because the imaginary part can be written as

$$
\begin{equation*}
\operatorname{Im}\left(\int_{\gamma} \omega\right)=\int_{\gamma} \operatorname{Im}(\omega)=\int_{\gamma} \operatorname{Re}(-\sqrt{-1} \omega)=\operatorname{Re}\left(\int_{\gamma}(-\sqrt{-1} \omega)\right) . \tag{9}
\end{equation*}
$$

The group $G$ acts on $H_{1}(X, \mathbb{R})$ as follows:

$$
\gamma \longmapsto \varphi_{*}(\gamma) .
$$

The equality

$$
\int_{\varphi_{*}(\gamma)} \omega=\int_{\gamma} \varphi^{*}(\omega)
$$

for $\gamma \in H_{1}(X, \mathbb{R})$ and $\omega \in H^{0}\left(X, K_{X}\right)$, and (9) imply

$$
\left(\varphi_{*}(\gamma), \omega\right)=\left(\gamma, \varphi^{*}(\omega)\right)
$$

for the pairing in (8). Hence $\varphi_{*}$ is the dual linear operator to $\varphi^{*}$, so

$$
\begin{equation*}
M^{*}=\frac{1}{d} \sum_{j=1}^{d}\left(\varphi_{j}\right)_{*} \tag{10}
\end{equation*}
$$

is the dual linear operator to $M$ :

$$
\left(M^{*}(\gamma), \omega\right)=(\gamma, M(\omega)) .
$$

$M^{*}$ and $M^{\prime *}=I-M^{*}$ are linear projections in $H_{1}(X, \mathbb{R})$.
Next, let $\mathbb{A}$ be a linear isomorphism of $H_{1}(X, \mathbb{R})$ onto $\mathbb{C}^{g}$ (over $\mathbb{R}$ ) defined by

$$
\mathbb{A}(\gamma)=\int_{\gamma} \Omega \text { for } \gamma \in H_{1}(X, \mathbb{R})
$$

Then we have easily the following equalities:

$$
\begin{aligned}
\mathbb{A} M^{*} \mathbb{A}^{-1} & =L \\
\mathbb{A} M^{\prime *} \mathbb{A}^{-1} & =L^{\prime}
\end{aligned}
$$

In this sense, $L$ and $L^{\prime}$ are 'dual' operators to $M$ and $M^{\prime}$, respectively.
We also note

$$
\mathbb{A}\left(H_{1}(X, \mathbb{Z})\right)=\Gamma_{X}
$$

Thus the Jacobi variety $J(X)$ is isomorphic (as a real torus) to

$$
H_{1}(X, \mathbb{R}) / H_{1}(X, \mathbb{Z})
$$

## 3. Some Abelian subvarieties

Using the linear isomorphism $\mathbb{A}$ in the previous section, we can use $H_{1}(X, \mathbb{R})$ instead of $\mathbb{C}^{g}$ for the discussion on discrete subgroups in it: By the expression of $M^{*}$ in (10), we have

$$
\begin{equation*}
M^{*}\left(H_{1}(X, \mathbb{Z})\right) \subset \frac{1}{d} H_{1}(X, \mathbb{Z}) \tag{11}
\end{equation*}
$$

and so

$$
\begin{equation*}
M^{\prime *}\left(H_{1}(X, \mathbb{Z})\right) \subset \frac{1}{d} H_{1}(X, \mathbb{Z}) \tag{12}
\end{equation*}
$$

Hence $M^{*}\left(H_{1}(X, \mathbb{Z})\right)$ and $M^{*}\left(H_{1}(X, \mathbb{Z})\right)$ are discrete subgroups in $H_{1}(X, \mathbb{R})$ and

$$
\begin{equation*}
M^{*}\left(H_{1}(X, \mathbb{Z})\right) \oplus M^{* *}\left(H_{1}(X, \mathbb{Z})\right) \subset \frac{1}{d} H_{1}(X, \mathbb{Z}) \tag{13}
\end{equation*}
$$

Moreover, from (11) and (12), we have

$$
M^{*}\left(d H_{1}(X, \mathbb{Z})\right) \subset M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})
$$

and

$$
M^{\prime *}\left(d H_{1}(X, \mathbb{Z})\right) \subset M^{\prime *}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})
$$

Hence we have

$$
d H_{1}(X, \mathbb{Z}) \subset\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right) \oplus\left(M^{\prime *}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right)
$$

From this, together with (13), we see the ranks of these discrete subgroups are

$$
\operatorname{rank}\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right)=\operatorname{rank}\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right)\right)=2 g_{0}
$$

and

$$
\operatorname{rank}\left(M^{\prime *}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right)=\operatorname{rank}\left(M^{\prime *}\left(H_{1}(X, \mathbb{Z})\right)\right)=2 l
$$

Also, we see the following equalities:

$$
\begin{equation*}
M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})=M^{*}\left(H_{1}(X, \mathbb{R})\right) \cap H_{1}(X, \mathbb{Z}) \tag{14}
\end{equation*}
$$

and
(15) $\quad M^{\prime *}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})=M^{\prime *}\left(H_{1}(X, \mathbb{R})\right) \cap H_{1}(X, \mathbb{Z})$
for $M^{*} M^{*}=M^{*}$ and $M^{*} M^{*}=M^{*}$.
Thus, correspondingly, we have discrete subgroups

$$
\Gamma_{X} \cap\{(z, 0)\}, L\left(\Gamma_{X}\right)
$$

of $\{(z, 0)\}=L\left(\mathbb{C}^{g}\right)$ of rank $2 g_{0}$, and discrete subgroups

$$
\Gamma_{X} \cap\{(0, w)\}, L^{\prime}\left(\Gamma_{X}\right)
$$

of $\{(0, w)\}=L^{\prime}\left(\mathbb{C}^{g}\right)$ of rank $2 l$.
Consider the complex tori

$$
A(\pi)=\{(z, 0)\} / \Gamma_{X} \cap\{(z, 0)\}
$$

$$
\begin{aligned}
B(\pi) & =\{(z, 0)\} / L\left(\Gamma_{X}\right) \\
A^{\prime}(\pi) & =\{(0, w)\} / \Gamma_{X} \cap\{(0, w)\} \\
B^{\prime}(\pi) & =\{(0, w)\} / L^{\prime}\left(\Gamma_{X}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\{(z, 0)\} / \Gamma_{X} \cap\{(z, 0)\} & \cong\left(\{(z, 0)\}+\Gamma_{X}\right) / \Gamma_{X} \\
\{(0, w)\} / \Gamma_{X} \cap\{(0, w)\} & \cong\left(\{(0, w)\}+\Gamma_{X}\right) / \Gamma_{X}
\end{aligned}
$$

$A(\pi)$ and $A^{\prime}(\pi)$ are regarded as complex subtori, so regarded as Abelian subvarieties of $J(X)$. Later, we show that $B(\pi)$ and $B^{\prime}(\pi)$ are Abelian varieties dual to $A(\pi)$ and $A^{\prime}(\pi)$, respectively.

Note first the inclusion relation

$$
\begin{aligned}
\Gamma_{X} \cap\{(z, 0)\} & =\Gamma_{X} \cap L\left(\Gamma_{X}\right) \subset L\left(\Gamma_{X}\right) \\
\Gamma_{X} \cap\{(0, w)\} & =\Gamma_{X} \cap L^{\prime}\left(\Gamma_{X}\right) \subset L^{\prime}\left(\Gamma_{X}\right)
\end{aligned}
$$

(see (14) and (15)), of discrete subgroups of the same ranks. Hence $B(\pi)$ and $B^{\prime}(\pi)$ are isogeneous to $A(\pi)$ and $A^{\prime}(\pi)$, respectively. Moreover,

Lemma 3. There are following exact sequences:
(i) $0 \rightarrow A^{\prime}(\pi) \rightarrow J(X) \rightarrow B(\pi) \rightarrow 0$;
(ii) $0 \rightarrow A(\pi) \rightarrow J(X) \rightarrow B^{\prime}(\pi) \rightarrow 0$.

Proof. $L: \mathbb{C}^{g} \rightarrow\{(z, 0)\}=L\left(\mathbb{C}^{g}\right)$ induces the homomorphism

$$
L: J(X)=\mathbb{C}^{g} / \Gamma_{X} \rightarrow B(\pi)=(z, 0) / L\left(\Gamma_{X}\right)
$$

whose kernel is clearly

$$
\left(\Gamma_{X}+\{(0, w)\}\right) / \Gamma_{X} \cong\{(0, w)\} / \Gamma_{X} \cap\{(0, w)\}=A^{\prime}(\pi)
$$

Hence we have the exact sequence (i). The exact sequence (ii) can be shown in a similar way.

Next, note that $H_{1}(X, \mathbb{R})$ and $H^{0}\left(X, K_{X}\right)$ are dual locally compact abelian groups in the sense of Pontryagin [4, Chapter 6] with respect to the pairing

$$
\langle\gamma, \omega\rangle=\exp \left(2 \pi \sqrt{-1} \operatorname{Re}\left(\int_{\gamma} \omega\right)\right)
$$

for $\gamma \in H_{1}(X, \mathbb{R})$ and $\omega \in H^{0}\left(X, K_{X}\right)$ :

$$
\begin{aligned}
H_{1}(X, \mathbb{R})^{*} & =H^{0}\left(X, K_{X}\right), \\
H^{0}\left(X, K_{X}\right)^{*} & =H_{1}(X, \mathbb{R}) .
\end{aligned}
$$

We recall here some results on the duality in Pontryagin [4, Chapter 6]:
(i) In general, for a locally compact abelian group $B, B^{* *}$ is canonically isomorphic to $B$. We identify $B$ and $B^{* *}$ through the canonical isomorphism.
(ii) For a (locally compact) subgroup $A$ of a locally compact abelian group $B$, we put

$$
A^{\perp}=\left\{\beta \in B^{*} \mid\langle\beta, a\rangle=1 \text { for all } a \in A\right\}
$$

and call it the annihilator of $A$. (Here $\langle$,$\rangle is the pairing of B$ and its dual group $B^{*}$.) Then we have

$$
A^{\perp \perp}=A
$$

(iii) For an exact sequence of (locally compact) abelian groups:

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

we have the exact sequence of dual groups:

$$
0 \longleftarrow A^{*} \longleftarrow B^{*} \longleftarrow C^{*} \longleftarrow 0
$$

Moreover we have

$$
C^{*}=A^{\perp}
$$

(iv) In particular, if $B=A \times C$ (direct product), then $B^{*}=A^{*} \times C^{*}$, and $A^{*}=C^{\perp}$ and $C^{*}=A^{\perp}$.

Now, returning to our case,
Lemma 4. (i) $M\left(H^{0}\left(X, K_{X}\right)\right)^{\perp}=M^{*}\left(H_{1}(X, \mathbb{R})\right)$.
(ii) $M^{\prime}\left(H^{0}\left(X, K_{X}\right)\right)^{\perp}=M^{*}\left(H_{1}(X, \mathbb{R})\right)$ with respect to the pairing of $H^{0}(X$, $\left.K_{X}\right)$ and $H_{1}(X, \mathbb{R})$.
Proof. (i) For $\gamma \in H_{1}(X, \mathbb{R})$, assume that

$$
\langle\gamma, M(\omega)\rangle=1 \quad \text { for all } \omega \in H^{0}\left(X, K_{X}\right)
$$

Then

$$
\begin{aligned}
1=\langle\gamma, M(\omega)\rangle & =\exp 2 \pi \sqrt{-1} \operatorname{Re}\left(\int_{\gamma} M(\omega)\right) \\
& =\exp 2 \pi \sqrt{-1} \operatorname{Re}\left(\int_{M^{*}(\gamma)} \omega\right) \quad \text { for all } \omega \in H^{0}\left(X, K_{X}\right)
\end{aligned}
$$

This implies

$$
\operatorname{Re}\left(\int_{M^{*}(\gamma)} \omega\right) \in \mathbb{Z} \quad \text { for all } \omega \in H^{0}\left(X, K_{X}\right)
$$

Since $H^{0}\left(X, K_{X}\right)$ is a complex vector space, we have

$$
\int_{M^{*}(\gamma)} \omega=0 \text { for all } \omega \in H^{0}\left(X, K_{X}\right)
$$

Hence $M^{*}(\gamma)=0$, that is, $\gamma \in M^{*}\left(H_{1}(X, \mathbb{R})\right)$. This argument is reversible. Hence (i) is proved.
(ii) can be shown in a similar way.

Lemma 5. (i) $\left(M^{*}\left(H_{1}(X, \mathbb{R})\right)\right)^{*}=M\left(H^{0}\left(X, K_{X}\right)\right)$.
(ii) $\left(M^{\prime *}\left(H_{1}(X, \mathbb{R})\right)\right)^{*}=M^{\prime}\left(H^{0}\left(X, K_{X}\right)\right)$.

Proof. By the decompositions into the direct sums:

$$
\begin{aligned}
H^{0}\left(X, K_{X}\right) & =M\left(H^{0}\left(X, K_{X}\right)\right) \oplus M^{\prime}\left(H^{0}\left(X, K_{X}\right)\right) \\
H_{1}(X, \mathbb{R}) & =M^{*}\left(H_{1}(X, \mathbb{R})\right) \oplus M^{\prime *}\left(H_{1}(X, \mathbb{R})\right)
\end{aligned}
$$

and by Lemma 4 , the equalities (i) and (ii) are obtained.
Using the intersection number $\alpha \cdot \beta$ in $H_{1}(X, \mathbb{R})$, we define a linear isomorphism

$$
\mathbb{B}: H_{1}(X, \mathbb{R}) \rightarrow H^{0}\left(X, K_{X}\right)
$$

by

$$
\operatorname{Re}\left(\int_{\beta} \mathbb{B}(\alpha)\right)=\alpha \cdot \beta \quad \text { for } \alpha, \beta \in H_{1}(X, \mathbb{R})
$$

Hence $H^{0}\left(X, K_{X}\right)$ is isomorphic to its dual group, that is, $H^{0}\left(X, K_{X}\right)$ is self-dual. Thus we may say that $H^{0}\left(X, K_{X}\right), H_{1}(X, \mathbb{R})$ and (through the linear isomorphisms $\mathbb{A}$ and $\left.\mathbb{A} \mathbb{B}^{-1}\right) \mathbb{C}^{g}$ are self-dual.

Lemma 6. $M\left(\mathbb{B}\left(H_{1}(X, \mathbb{Z})\right)\right)^{\perp} \cap M^{*}\left(H_{1}(X, \mathbb{R})\right)=H_{1}(X, \mathbb{Z}) \cap M^{*}\left(H_{1}(X, \mathbb{Z})\right)$.
Proof. For $\alpha \in H_{1}(X, \mathbb{R})$, assume

$$
\operatorname{Re}\left(\int_{M^{*}(\alpha)} M(\mathbb{B}(\beta))\right) \in \mathbb{Z}
$$

for all $\beta \in H_{1}(X, \mathbb{Z})$. Then

$$
\begin{aligned}
\operatorname{Re}\left(\int_{M^{*}(\alpha)} M(\mathbb{B}(\beta))\right) & =\operatorname{Re}\left(\int_{M^{*} M^{*}(\alpha)} \mathbb{B}(\beta)\right) \\
& =\operatorname{Re}\left(\int_{M^{*}(\alpha)} \mathbb{B}(\beta)\right)=\beta \cdot M^{*}(\alpha) \in \mathbb{Z}
\end{aligned}
$$

for all $\beta \in H_{1}(X, \mathbb{Z})$. Hence

$$
\gamma=M^{*}(\alpha) \in H_{1}(X, \mathbb{Z})
$$

Since

$$
\gamma=M^{*}(\alpha)=M^{*} M^{*}(\alpha)=M^{*}(\gamma)
$$

we conclude

$$
\gamma \in M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})
$$

This argument can be reversible. Hence

$$
M\left(\mathbb{B}\left(H_{1}(X, \mathbb{Z})\right)\right)^{\perp} \cap M^{*}\left(H_{1}(X, \mathbb{R})\right)=H_{1}(X, \mathbb{Z}) \cap M^{*}\left(H_{1}(X, \mathbb{Z})\right)
$$

By a similar argument, we have:
Lemma 7. $M^{\prime}\left(\mathbb{B}\left(H_{1}(X, \mathbb{Z})\right)\right)^{\perp} \cap M^{\prime *}\left(H_{1}(X, \mathbb{R})\right)=H_{1}(X, \mathbb{Z}) \cap M^{\prime *}\left(H_{1}(X, \mathbb{Z})\right)$.

Now, consider the following exact sequence:

$$
0 \rightarrow L\left(\Gamma_{X}\right) \cap \Gamma_{X} \rightarrow\{(z, 0)\} \rightarrow A(\pi) \rightarrow 0
$$

Using the self-duality of $\mathbb{C}^{g}$ and Lemma 6 , the dual exact sequence of this exact sequence is given as follows:

$$
0 \longleftarrow\left(L\left(\Gamma_{X}\right) \cap \Gamma_{X}\right)^{*} \longleftarrow\{(z, 0)\} \longleftarrow L\left(\Gamma_{X}\right) \longleftarrow 0
$$

Hence we have

$$
\begin{align*}
& A(\pi)^{*}=\left(\{(z, 0)\} / L\left(\Gamma_{X}\right) \cap \Gamma_{X}\right)^{*}=L\left(\Gamma_{X}\right)  \tag{16}\\
& B(\pi)^{*}=\left(\{(z, 0)\} / L\left(\Gamma_{X}\right)\right)^{*}=L\left(\Gamma_{X}\right) \cap \Gamma_{X} \tag{17}
\end{align*}
$$

Thus $A(\pi)$ and $B(\pi)$ are dual Abelian varieties.
In a similar way, (using Lemma 7 ), we see that $A^{\prime}(\pi)$ and $B^{\prime}(\pi)$ are dual Abelian varieties.

## 4. Accola's theorem

We now define two homomorphisms

$$
\begin{align*}
& \pi_{*}: J(X) \rightarrow J(Y)  \tag{18}\\
& \pi^{*}: J(Y) \rightarrow J(X) \tag{19}
\end{align*}
$$

as follows:

$$
\begin{equation*}
\pi_{*}: \sum_{j=1}^{m} \int_{q_{j}}^{p_{j}} \Omega\left(\bmod \Gamma_{X}\right) \longmapsto \sum_{j=1}^{m} \int_{\pi\left(q_{j}\right)}^{\pi\left(p_{j}\right)} \Omega_{0}\left(\bmod \Gamma_{Y}\right) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi^{*}: \sum_{j=1}^{m} \int_{Q_{j}}^{P_{j}} \Omega_{0}\left(\bmod \Gamma_{Y}\right) \longmapsto \sum_{j=1}^{m} \sum_{k=1}^{d} \int_{q_{j k}}^{p_{j k}} \Omega\left(\bmod \Gamma_{X}\right) \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
\Omega & =\left(\pi^{*} \eta_{1}, \ldots, \pi^{*} \eta_{g_{0}}, \omega_{1}, \ldots, \omega_{l}\right) \\
\Omega_{0} & =\left(\eta_{1}, \ldots, \eta_{g_{0}}\right) \\
\pi^{-1}\left(P_{j}\right) & =p_{j 1}+\cdots+p_{j d} \quad \text { and } \\
\pi^{-1}\left(Q_{j}\right) & =q_{j 1}+\cdots+q_{j d} .
\end{aligned}
$$

(Note that these homomorphisms are well defined, for $\pi_{*}(\gamma) \in H_{1}(Y, \mathbb{Z})$ for $\gamma \in H_{1}(X, \mathbb{Z})$, and $\pi^{-1}(\delta) \in H_{1}(X, \mathbb{Z})$ for $\delta \in H_{1}(Y, \mathbb{Z})$.) Then, using the 'coordinates' $(z, w)$ in (5), these homomorphisms can be written as follows:

$$
\begin{align*}
& \pi_{*}:(z, w)\left(\bmod \Gamma_{X}\right) \longmapsto z\left(\bmod \Gamma_{Y}\right)  \tag{22}\\
& \pi^{*}: z\left(\bmod \Gamma_{Y}\right) \longmapsto(d z, 0)\left(\bmod \Gamma_{X}\right) \tag{23}
\end{align*}
$$

(22) follows from the following property of integration:

$$
\int_{\pi(q)}^{\pi(p)} \Omega_{0}=\int_{q}^{p} \pi^{*} \Omega_{0}
$$

(23) follows from the property of integration and the $G$-invariance of the image in (21) (see (ii) of Lemma 2).

We first discuss the homomorphism $\pi_{*}$ in (18). The homomorphism $\pi_{*}$ can be decomposed as follows:

$$
\pi_{*}=\hat{\pi}_{*} \circ L,
$$

where

$$
\begin{gathered}
L: J(X) \rightarrow B(\pi)=\{(z, 0)\} / L\left(\Gamma_{X}\right) \\
(z, w)\left(\bmod \Gamma_{X}\right) \longmapsto(z, 0)\left(\bmod L\left(\Gamma_{X}\right)\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& \hat{\pi}_{*}: B(\pi) \rightarrow J(Y), \\
& (z, 0)\left(\bmod L\left(\Gamma_{X}\right)\right) \longmapsto z\left(\bmod \Gamma_{Y}\right) .
\end{aligned}
$$

Here $L$ and $\hat{\pi}_{*}$ are surjective homomorphism. Moreover, since $\operatorname{dim} B(\pi)=g_{0}=$ $\operatorname{dim} J(Y)$, the kernel of $\hat{\pi}_{*}$ is a finite subgroup of $B(\pi)$. Hence,

Lemma 8. (i) The decomposition $\pi_{*}=\hat{\pi}_{*} \circ L$ gives the Stein factorization of the map $\pi_{*}$.
(ii) $B(\pi)$ (and so $A(\pi)$ ) is isogeneous to $J(Y)$.

Moreover we have:
Lemma 9. The kernel $\operatorname{Ker}\left(\hat{\pi}_{*}\right)$ of $\hat{\pi}_{*}$ is isomorphic to $H_{1}(Y, \mathbb{Z}) / \pi_{*}\left(H_{1}(X, \mathbb{Z})\right)$, which is isomorphic to the Galois group of the maximal unbranched abelian covering of $Y$ in $X$.

Proof. Note that

$$
\hat{\pi}_{*}: L\left(\Gamma_{X}\right) \rightarrow \Gamma_{Y}
$$

is injective. Hence $L\left(\Gamma_{X}\right)$ and $\hat{\pi}_{*}\left(L\left(\Gamma_{X}\right)\right)=\pi_{*}\left(\Gamma_{X}\right)$ is isomorphic via $\hat{\pi}_{*}$. Hence $\hat{\pi}_{*}: B(\pi) \rightarrow J(Y)$ can be decomposed as follows:

$$
\hat{\pi}_{*}: B(\pi)=\{(z, 0)\} / L\left(\Gamma_{X}\right) \cong \mathbb{C}^{g_{0}} / \pi_{*}\left(\Gamma_{X}\right) \rightarrow \mathbb{C}^{g_{0}} / \Gamma_{Y}=J(Y)
$$

Hence $\operatorname{Ker}\left(\hat{\pi}_{*}\right)$ is isomorphic to $\Gamma_{Y} / \pi_{*}\left(\Gamma_{X}\right)$, which is isomorphic to

$$
H_{1}(Y, \mathbb{Z}) / \pi_{*}\left(H_{1}(X, \mathbb{Z})\right)
$$

In order to show the last assertion, take a point $q_{0}$ in $Y$, which is not contained in the branch locus $B_{\pi}$ of $\pi$. Take a point $p_{0} \in \pi^{-1}\left(q_{0}\right)$. Put

$$
\begin{aligned}
U & =\pi_{1}\left(Y-B_{\pi}, q_{0}\right), \\
V & =\pi_{1}\left(X-\pi^{-1}\left(B_{\pi}\right), p_{0}\right)
\end{aligned}
$$

(the fundamental groups). We may consider $V$ as a normal subgroup of $U$ such that $U / V \cong G$, through the injective homomorphism $\pi_{*}$.

Consider the following commutative diagram of injective homomorphisms:


This diagram induces the homomorphism

$$
\pi_{*}: H_{1}\left(X-\pi^{-1}\left(B_{\pi}\right), \mathbb{Z}\right) \cong V /[V, V] \rightarrow H_{1}\left(Y-B_{\pi}, \mathbb{Z}\right) \cong U /[U, U]
$$

Moreover, note that $\pi_{*}$ maps a small circle $\gamma_{p}$ around a point $p$ in $\pi^{-1}\left(B_{\pi}\right)$ to $e$-times of a circle $\delta_{q}$ around $q=\pi(p)$, where $e$ is the ramification index of $\pi$ at $p$. Hence $\pi_{*}$ induces the homomorphism

$$
\begin{aligned}
\pi_{*}: H_{1}(X, \mathbb{Z}) & \cong H_{1}\left(X-\pi^{-1}\left(B_{\pi}\right), \mathbb{Z}\right) /\left\langle\gamma_{p} \mid p \in \pi^{-1}\left(B_{\pi}\right)\right\rangle \\
& \rightarrow H_{1}(Y, \mathbb{Z}) \cong H_{1}\left(Y-B_{\pi}, \mathbb{Z}\right) /\left\langle\delta_{q} \mid q \in B_{\pi}\right\rangle
\end{aligned}
$$

Note that $U / V$ and $[U, U] V / V$ are isomorphic to $G$ and $[G, G]$, respectively. Hence we conclude that $H_{1}(Y, \mathbb{Z}) / \pi_{*}\left(H_{1}(X, \mathbb{Z})\right)$ is isomorphic to the Galois group of the maximal unbranched abelian covering of $Y$ in $X$.

Next, we discuss the homomorphism $\pi^{*}$ in (19).
Lemma 10. (i) If $\delta$ and $\delta^{\prime}$ are homologous 1-cycles on $Y$, then $\pi^{-1}(\delta)$ and $\pi^{-1}\left(\delta^{\prime}\right)$ are homologous 1-cycles on $X$.
(ii) For $\delta \in H_{1}(Y, \mathbb{Z})$,

$$
\int_{\pi^{-1}(\delta)} \Omega=\left(\int_{\pi^{-1}(\delta)} \pi^{*} \Omega_{0}, 0\right)=\left(d \int_{\delta} \Omega_{0}, 0\right) \in L\left(\Gamma_{X}\right) \cap \Gamma_{X} .
$$

Proof. (i) is obvious. In the assertion (ii), the equality

$$
\int_{\pi^{-1}(\delta)} \pi^{*} \Omega_{0}=d \int_{\delta} \Omega_{0}
$$

follows from a property of integration. Next, note that $\pi^{-1}(\delta)$ is $G$-invariant:

$$
\varphi_{*}\left(\pi^{-1}(\delta)\right)=\pi^{-1}(\delta)
$$

for all $\varphi \in G$. Hence

$$
\varphi_{*}\left(\int_{\pi^{-1}(\delta)} \Omega\right)=\int_{\varphi_{*}\left(\pi^{-1}(\delta)\right)} \Omega=\int_{\pi^{-1}(\delta)} \Omega
$$

for all $\varphi \in G$. Hence the first equality in (ii) follows from (ii) of Lemma 2. The left hand side of the first equality of (ii) belongs to $\Gamma_{X}$, while the right hand side belongs to $L\left(\Gamma_{X}\right)$.

Lemma 10 implies that

$$
\pi^{*}\left(\Gamma_{Y}\right) \subset L\left(\Gamma_{X}\right) \cap \Gamma_{X}
$$

Hence the image of the homomorphism $\pi^{*}$ in (19) is $A(\pi)=\{(z, 0)\} / L\left(\Gamma_{X}\right) \cap$ $\Gamma_{X}:$

$$
\pi^{*}: J(Y) \rightarrow A(\pi) \hookrightarrow J(X)
$$

Moreover, note that

$$
\begin{aligned}
\pi^{*}: \mathbb{C}^{g_{0}} & \rightarrow\{(z, 0)\} \\
z & \longmapsto(d z, 0)
\end{aligned}
$$

is bijective. Hence the kernel of $\pi^{*}$ in (19) is isomorphic to

$$
\left(L\left(\Gamma_{X}\right) \cap \Gamma_{X}\right) / \pi^{*}\left(\Gamma_{Y}\right),
$$

which is isomorphic (via $\mathbb{A}^{-1}$ ) to

$$
\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right) / \pi^{*}\left(H_{1}(Y, \mathbb{Z})\right)
$$

Thus we conclude:
Lemma 11. The kernel of the homomorphism $\pi^{*}: J(Y) \rightarrow J(X)$ is isomorphic to $\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right) / \pi^{*}\left(H_{1}(Y, \mathbb{Z})\right)$.

Now we are ready to prove the following theorem of Accola [1, p. 5]:
Theorem 2 (Accola). The kernel of the homomorphism $\pi^{*}: J(Y) \rightarrow J(X)$ is a finite group isomorphic to the dual group of the Galois group of the maximal unbranched abelian covering of $Y$ in $X$.

Proof. By Lemma 9 and Lemma 11, it suffices to show that $\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap\right.$ $\left.H_{1}(X, \mathbb{Z})\right) / \pi^{*}\left(H_{1}(Y, \mathbb{Z})\right)$ is isomorphic to the dual group of $\operatorname{Ker}\left(\hat{\pi}_{*}\right)$. From the exact sequence of abelian groups:

$$
0 \rightarrow \operatorname{Ker}\left(\hat{\pi}_{*}\right) \rightarrow B(\pi) \rightarrow J(\pi) \rightarrow 0
$$

we have the exact sequence of the dual abelian groups:

$$
0 \longleftarrow\left(\operatorname{Ker}\left(\hat{\pi}_{*}\right)\right)^{*} \longleftarrow B(\pi)^{*} \longleftarrow J(\pi)^{*} \longleftarrow 0
$$

Note that $J(Y)^{*} \cong H_{1}(Y, \mathbb{Z})$ and $B(\pi)^{*} \cong\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right)$ (see (17)). Also note that the dual homomorphism of $\hat{\pi}_{*}$ coincides with the injective homomorphism $\pi^{*}: H_{1}(Y, \mathbb{Z}) \rightarrow\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right)$. Hence $\left(\operatorname{Ker}\left(\hat{\pi}_{*}\right)\right)^{*}$ is isomorphic to $\left(M^{*}\left(H_{1}(X, \mathbb{Z})\right) \cap H_{1}(X, \mathbb{Z})\right) / \pi^{*}\left(H_{1}(Y, \mathbb{Z})\right)$.

Remark 1. [1, p. 5] asserts more generally that Theorem 2 holds for (not necessarily Galois) finite covering $\pi: X \rightarrow Y$. (Note that the homomorphisms $\pi_{*}$ and $\pi^{*}$ in (18) and (19) can be defined as in (20) and (21) for (not necessarily Galois) finite coverings.)

## 5. Galois correspondence

In our point of view, $A(\pi)$ looks most important among Abelian subvarieties of $J(X)$. Every point of $A(\pi)$ is fixed by every element of $G$ (see (7)).
Lemma 12. If $A$ is an Abelian subvariety of $J(X)$, each of whose points is fixed by every element of $G$, then $A \subset A(\pi)$.

Proof. Any Abelian subvariety $A$ of $J(X)$ can be expressed as

$$
A=\frac{S}{S \cap \Gamma_{X}} \cong \frac{S+\Gamma_{X}}{\Gamma_{X}}
$$

where $S$ is a linear subspace of $\mathbb{C}^{g}$. Suppose that every point of $A$ is fixed by every element of $G$. For every vector $v \in S$ and every $\varphi \in G$, there exists a vector $a(v, \varphi) \in \Gamma_{X}$ such that

$$
\varphi_{*}(v)=v+a(v, \varphi), \text { that is, } a(v, \varphi)=\varphi_{*}(v)-v
$$

Then, for a complex parameter $t$,

$$
a(t v, \varphi)=\varphi_{*}(t v)-t v=t \varphi_{*}(v)-t v=t a(v, \varphi)
$$

Since $\Gamma_{X}$ is a discrete subgroup of $\mathbb{C}^{g}$, this relation implies $a(v, \varphi)=0$. Hence

$$
\varphi_{*}(v)=v \quad \text { for all } v \in S, \varphi \in G .
$$

By (ii) of Lemma 2, we have $v \in\{(z, 0)\}$. That is, $S \subset\{(z, 0)\}$. Hence $A \subset A(\pi)$.

For a subgroup $H$ of $G$, the set of all points in $J(X)$ fixed by every element of $H$ forms a subgroup of $J(X)$. Let $A(H)$ be the connected component of 0 of the subgroup. This is the largest Abelian subvariety each of whose points is fixed by every element of $H$. By Lemma 12,

$$
A(G)=A(\pi)
$$

In general, we have

$$
A(H)=A\left(\pi_{H}\right)
$$

where

$$
\pi_{H}: X \rightarrow X / H
$$

is the canonical projection.
An Abelian subvariety $A$ of $J(X)$ is said to be maximal if $A=A(H)$ for a subgroup $H$ of $G$.

Theorem 3 (Galois correspondence). Assume $g_{0}=g(X / G) \geq 2$. Then the correspondence

$$
H \longmapsto A(H)
$$

is bijective between the set $\{H\}$ of subgroups of $G$ and the set $\{A\}$ of maximal Abelian subvarieties of $J(X)$. The correspondence reverses the inclusion relations.

For the proof of Theorem 3, we first note the following relation:

$$
A(G) \subset A(H) \subset J(X)
$$

Next, we prove:
Lemma 13. For subgroups $H$ and $H^{\prime}$ of $G$ with $H \varsubsetneqq H^{\prime}$,
(i) $A(G) \subset A\left(H^{\prime}\right) \subset A(H) \subset J(X)$.
(ii) If the genus of $X / H^{\prime}$ satisfies $g\left(X / H^{\prime}\right) \geq 2$, then $A\left(H^{\prime}\right) \varsubsetneqq A(H)$.

Proof. (i) is clear from the definition of $A(H)$. We prove (ii). Let

$$
\pi_{H, H^{\prime}}: X / H \rightarrow X / H^{\prime}
$$

be the canonical projection. This is a finite covering. The Riemann-Hurwitz formula for $\pi_{H, H^{\prime}}$ can be written as

$$
2 g(X / H)-2=d_{1}\left(2 g\left(X / H^{\prime}\right)-2\right)+\sum_{p}\left(e_{p}-1\right),
$$

where $d_{1}=\left[H^{\prime}: H\right]$ is the mapping degree of $\pi_{H, H^{\prime}}$ and $e_{p}(\geq 2)$ is the ramification index at the ramification point $p \in X / H$.

Since $d_{1} \geq 2$ and $g\left(X / H^{\prime}\right) \geq 2$, we have

$$
2 g(X / H)-2 \geq d_{1}\left(2 g\left(X / H^{\prime}\right)-2\right)>2 g\left(X / H^{\prime}\right)-2
$$

Hence $g(X / H)>g\left(X / H^{\prime}\right)$. Hence

$$
\operatorname{dim} A(H)=g(X / H)>g\left(X / H^{\prime}\right)=\operatorname{dim} A\left(H^{\prime}\right)
$$

Now for an Abelian subvariety $A$ of $J(X)$, we put

$$
H(A)=\{\varphi \in G \mid \text { every point of } A \text { is fixed by } \varphi\}
$$

Then $H(A)$ is a subgroup of $G$.
Lemma 14. If $g_{0}=g(X / G) \geq 2$, then $H(A(H))=H$.
Proof. Put $H^{\prime}=H(A(H))$. Then by the definition, we have $H \subset H^{\prime}$. Hence $A\left(H^{\prime}\right) \subset A(H)$. But note that every point of $A(H)$ is fixed by every element of $H^{\prime}$. Hence, by the maximality of $A\left(H^{\prime}\right)$, we have $A(H) \subset A\left(H^{\prime}\right)$. Hence $A(H)=A\left(H^{\prime}\right)$. Now, by Lemma 13, we have $H=H^{\prime}$.

Now Theorem 3 follows from Lemma 13 and Lemma 14.

## 6. G-invariant linear systems

We want to look for $G$-invariant linear systems on $X$, making use of $J(X)$ and its Abelian subvariety $A(\pi)$. A linear system $\Lambda$ on $X$ is said to be $G$ invariant if every element of $G$ maps every divisor in $\Lambda$ to a divisor in $\Lambda$.

Lemma 15. (i) For a (not necessarily positive) divisor $D$ on $X$, assume that $D \sim \varphi(D)$ (linearly equivalent) for all $\varphi \in G$. Then for any (not necessarily positive) divisor $E$ with $E \sim D$, we have $E \sim \varphi(E)$ for all $\varphi \in G$.
(ii) If a linear system $\Lambda$ is $G$-invariant, then the complete linear system $|D|$ containing $\Lambda$ is $G$-invariant.
(iii) If a divisor $D$ on $X$ is $G$-invariant, then the complete linear system $|D|$ is $G$-invariant.
(iv) If $|D|$ and $\left|D^{\prime}\right|$ are $G$-invariant, then $\left|D+D^{\prime}\right|$ is $G$-invariant.

Proof. (i) There is a meromorphic function $f$ on $X$ such that

$$
D-E=(f)=D_{f}(0)-D_{f}(\infty)
$$

where $(f), D_{f}(0), D_{f}(\infty)$ are the principal divisor of $f$, the zero-divisor of $f$ and the polar-divisor of $f$, respectively. Then, for any element $\varphi$ in $G$, we have

$$
\varphi(D)-\varphi(E)=\varphi\left(D_{f}(0)\right)-\varphi\left(D_{f}(\infty)\right)=\left(f \circ \varphi^{-1}\right)
$$

Hence $\varphi(D)$ and $\varphi(E)$ are linearly equivalent. By the assumption, $D$ and $\varphi(D)$ are linearly equivalent. Hence, $\varphi(E)$ is linearly equivalent to $D$ and so, linearly equivalent to $E$.
(ii), (iii) and (iv) follow from (i).

Hence, our first task is to look for $G$-invariant complete linear systems on $X$. Complete linear systems appear as the inverse images of points in $J(X)$ of the Abel-Jacobi map $\Phi_{m} \quad\left(m \in \mathbb{Z}_{>0}\right)$. Here the Abel-Jacobi map

$$
\Phi_{m}: S^{m}(X) \rightarrow J(X)
$$

( $S^{m}(X)$ : the $m$-th symmetric product of $X$ ) is defined as follows: Take a point $p_{0}$ in $X$ and fix it. For a divisor $D=p_{1}+\cdots+p_{m}$ in $S^{m}(X), \Phi_{m} \operatorname{maps} D$ to

$$
\sum_{j=1}^{m} \int_{p_{0}}^{p_{j}} \Omega\left(\bmod \Gamma_{X}\right)
$$

The group $G$ acts on $S^{m}(X)$. So we must modify the action of $G$ on $J(X)$ so that $\Phi_{m}$ becomes equivariant under the actions:

$$
\begin{aligned}
\sum_{j=1}^{m} \int_{p_{0}}^{p_{j}} \Omega\left(\bmod \Gamma_{X}\right) \longmapsto & \sum_{j=1}^{m} \int_{p_{0}}^{\varphi\left(p_{j}\right)} \Omega\left(\bmod \Gamma_{X}\right) \\
= & \sum_{j=1}^{m} \int_{\varphi\left(p_{0}\right)}^{\varphi\left(p_{j}\right)} \Omega+m \int_{p_{0}}^{\varphi\left(p_{0}\right)} \Omega\left(\bmod \Gamma_{X}\right)
\end{aligned}
$$

$$
=\sum_{j=1}^{m} \int_{p_{0}}^{p_{j}} \varphi^{*}(\Omega)+m \int_{p_{0}}^{\varphi\left(p_{0}\right)} \Omega\left(\bmod \Gamma_{X}\right)
$$

where $\varphi \in G$. Thus we define the modified action of $G$ on $J(X)$, which we denote ( $G, m$ )-action, as follows: (Writing $\varphi^{(m)}$, instead of $\varphi$ ),

$$
\begin{align*}
\varphi^{(m)}\left((z, w)\left(\bmod \Gamma_{X}\right)\right) & =\varphi_{*}(z, w)+m v_{\varphi}\left(\bmod \Gamma_{X}\right)  \tag{24}\\
& =\left(z, w B_{\varphi}\right)+m v_{\varphi}\left(\bmod \Gamma_{X}\right) \tag{25}
\end{align*}
$$

where $v_{\varphi}=\int_{p_{0}}^{\varphi\left(p_{0}\right)} \Omega$.
Hence we may define an affine transformation $\varphi^{(m)}$ on $\mathbb{C}^{g}$, which induces the action $\varphi^{(m)}$ on $J(X)$, as follows:

$$
\begin{equation*}
\varphi^{(m)}(z, w)=\varphi_{*}(z, w)+m v_{\varphi}=\left(z, w B_{\varphi}\right)+m v_{\varphi} \tag{26}
\end{equation*}
$$

where $v_{\varphi}=\int_{p_{0}}^{\varphi\left(p_{0}\right)} \Omega$.
Now, for any (not necessarily positive) integer $m$, we define the ( $G, m$ )-action on $J(X)$ and on $\mathbb{C}^{g}$ by $(24),(25)$ and (26), respectively.

By (24) and (25), a point $\left(z_{0}, w_{0}\right)\left(\bmod \Gamma_{X}\right)$ in $J(X)$ is a fixed point of $\varphi^{(m)}(m \in \mathbb{Z})$ if and only if

$$
\left(z_{0}, w_{0} B_{\varphi}\right)+m v_{\varphi}\left(\bmod \Gamma_{X}\right),=\left(z_{0}, w_{0}\right)\left(\bmod \Gamma_{X}\right)
$$

This occurs if and only if

$$
\left(0, w_{0} B_{\varphi}\right)+m v_{\varphi}\left(\bmod \Gamma_{X}\right)=\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)
$$

That is, this occurs if and only if

$$
\varphi^{(m)}\left(\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)\right)=\varphi_{*}\left(0, w_{0}\right)+m v_{\varphi}\left(\bmod \Gamma_{X}\right)=\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)
$$

That is, $\left(z_{0}, w_{0}\right)\left(\bmod \Gamma_{X}\right)$ is a fixed point of $\varphi^{(m)}$ if and only if $\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)$ is a fixed point of $\varphi^{(m)}$.

We put, for $m \in \mathbb{Z}$,

$$
\begin{aligned}
\operatorname{Fix}(J(X), G, m)=\left\{\left(z_{0}, w_{0}\right)\right. & \left(\bmod \Gamma_{X}\right) \in J(X) \mid\left(z_{0}, w_{0}\right)\left(\bmod \Gamma_{X}\right) \\
& \text { is a fixed point of } \left.\varphi^{(m)} \text { for all } \varphi \in G\right\},
\end{aligned}
$$

and

$$
\begin{array}{r}
\operatorname{Fix}_{0}(J(X), G, m)=\left\{\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right) \in J(X) \mid\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)\right. \\
\text { is a fixed point of } \left.\varphi^{(m)} \text { for all } \varphi \in G\right\} .
\end{array}
$$

We may express $\operatorname{Fix}_{0}(J(X), G, m)$ the set of points of $\operatorname{Fix}(J(X), G, m)$, which is orthogonal to $A(\pi)$. Then the above discussion implies:

Lemma 16. (i) $\operatorname{Fix}(J(X), G, m)$ is non-empty if and only if $\operatorname{Fix}_{0}(J(X), G, m)$ is non-empty.
(ii) If $\operatorname{Fix}(J(X), G, m)$ is non-empty, then

$$
\operatorname{Fix}(J(X), G, m)=\operatorname{Fix}_{0}(J(X), G, m)+A(\pi)
$$

where the addition is the addition in $J(X)$.
Thus we may restrict our discussion mainly to $\operatorname{Fix}_{0}(J(X), G, m)$.
Lemma 17. $\operatorname{Fix}_{0}(J(X), G, 0)$ is non-empty and is contained in the set of $d$ division points of 0 of $J(X)$.
Proof. $0=(0,0)\left(\bmod \Gamma_{X}\right)$ is a point of $\operatorname{Fix}_{0}(J(X), G, 0)$.
For a point $\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)$ of $\operatorname{Fix}_{0}(J(X), G, 0)$, we have $\left(0, w_{0} B_{\varphi}\right)=$ $\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)$ for all $\varphi \in G$. We add this equality for $\varphi=\varphi_{1}, \ldots, \varphi_{d}$ and get

$$
\left(0, w_{0}\left(B_{\varphi_{1}}+\cdots+B_{\varphi_{d}}\right)\right)=\left(0, d w_{0}\right)=d\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)
$$

The left hand side is equal to $(0,0)$ by (iii) of Lemma 2. Hence $\left(0, w_{0}\right)$ is a $d$-division point of 0 of $J(X)$.

The set $\Delta_{0}(0, d)$ of $d$-division points of 0 of $J(X)$ of the form $(0, w)$ forms a finite subgroup of $J(X)$ of order $d^{2 l}$, where $l=g-g_{0}$. Since the sum of two points of $\operatorname{Fix}_{0}(J(X), G, 0)$ is again a point of $\operatorname{Fix}_{0}(J(X), G, 0), \operatorname{Fix}_{0}(J(X), G, 0)$ is a subgroup of the finite subgroup $\Delta_{0}(0, d)$.
Lemma 18. For a point $\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right) \in \operatorname{Fix}_{0}(J(X), G, m)$,

$$
\operatorname{Fix}_{0}(J(X), G, m)=\operatorname{Fix}_{0}(J(X), G, 0)+\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right),
$$

where the addition is the addition in $J(X)$.
Proof. Take a point $(0, w)\left(\bmod \Gamma_{X}\right) \in \operatorname{Fix}_{0}(J(X), G, 0)$. Then

$$
\varphi_{*}(0, w)\left(\bmod \Gamma_{X}\right)=(0, w)\left(\bmod \Gamma_{X}\right)
$$

for all $\varphi \in G$. On the other hand, we have

$$
\begin{equation*}
\varphi_{*}\left(0, w_{0}\right)+m v_{\varphi}\left(\bmod \Gamma_{X}\right)=\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right) \tag{27}
\end{equation*}
$$

for all $\varphi \in G$. Adding these equality, we have

$$
\varphi_{*}\left(0, w+w_{0}\right)+m v_{\varphi}\left(\bmod \Gamma_{X}\right)=\left(0, w+w_{0}\right)\left(\bmod \Gamma_{X}\right)
$$

for all $\varphi \in G$. Hence

$$
\operatorname{Fix}_{0}(J(X), G, m) \supset \operatorname{Fix}_{0}(J(X), G, 0)+d\left(0, w_{0}\right)\left(\bmod \Gamma_{X}\right)
$$

Conversely, for a point $\left(0, w_{0}^{\prime}\right)\left(\bmod \Gamma_{X}\right)$, we have,

$$
\varphi_{*}\left(0, w_{0}^{\prime}\right)+m v_{\varphi}\left(\bmod \Gamma_{X}\right)=\left(0, w_{0}^{\prime}\right)\left(\bmod \Gamma_{X}\right)
$$

for all $\varphi \in G$. Subtracting (27) from this equality, we have

$$
\varphi_{*}\left(0, w_{0}^{\prime}-w_{0}\right)\left(\bmod \Gamma_{X}\right)=\left(0, w_{0}^{\prime}-w_{0}\right)\left(\bmod \Gamma_{X}\right)
$$

for all $\varphi \in G$. Hence $\left(\left(0, w_{0}^{\prime}\right)-\left(0, w_{0}\right)\right)\left(\bmod \Gamma_{X}\right) \in \operatorname{Fix}_{0}(J(X), G, 0)$.
A similar argument to the proof of Lemma 18 shows the following lemma:

Lemma 19. (i) For $m$ and $m^{\prime}$ in $\mathbb{Z}$, if $\operatorname{Fix}_{0}(J(X), G, m)$ and $\operatorname{Fix}_{0}\left(J(X), G, m^{\prime}\right)$ are non-empty, then $\operatorname{Fix}_{0}\left(J(X), G, m+m^{\prime}\right)$ is non-empty and $\operatorname{Fix}_{0}(J(X), G, m)$ $+\operatorname{Fix}_{0}\left(J(X), G, m^{\prime}\right)=\operatorname{Fix}_{0}\left(J(X), G, m+m^{\prime}\right)$, where the addition is the addition in $J(X)$.
(ii) $\operatorname{Fix}_{0}(J(X), G, m)+\cdots+\operatorname{Fix}_{0}(J(X), G, m)=\operatorname{Fix}_{0}(J(X), G, k m)$ for $m \in$ $\mathbb{Z}$, where the left hand side is the $k$-times summation in $J(X)$.
(iii) $\operatorname{Fix}_{0}(J(X), G,-m)=-\operatorname{Fix}_{0}(J(X), G, m)$ for $m \in \mathbb{Z}$.

Lemma 20. $\mathrm{Fix}_{0}(J(X), G, d)$ is non-empty.
Proof. For any point $P \in Y$, the divisor

$$
\pi^{-1}(P)=p_{1}+\cdots+p_{d} \in S^{d}(X)
$$

is fixed by every element of $G$. Hence, by (iii) of Lemma 15 ,

$$
\Phi_{d}\left(\pi^{-1}(P)\right) \in \operatorname{Fix}(J(X), G, d)
$$

Hence $\operatorname{Fix}_{0}(J(X), G, d)$ is non-empty.
Now, Lemma 18, Lemma 19 and Lemma 20 imply:
Theorem 4. (i) There is a positive integer $m_{0}$ with $m_{0} \mid d$ such that, for $m \in \mathbb{Z}$, Fix $x_{0}(J(X), G, m)$ is non-empty if and only if $m$ is divisible by $m_{0}$.
(ii) The number of points of non-empty $\operatorname{Fix}_{0}(J(X), G, m)$ is constant for $m$.

Let

$$
B_{\pi}=\left\{Q_{1}, \ldots, Q_{s}\right\} \quad(\subset Y)
$$

be the set of all branch points of $\pi$. Put

$$
\pi^{-1}\left(Q_{j}\right)=q_{j 1}+\cdots+q_{j l_{j}}
$$

for $j=1, \ldots, s$, where $l_{j}=d / e_{j}$ and $e_{j}(\geq 2)$ is the ramification index at $q_{j k}$ for $k=1, \ldots, l_{j}$.

The divisor $\pi^{-1}\left(Q_{j}\right)$ is fixed by every element of $G$. Hence, by (iii) of Lemma 15,

$$
\Phi_{d / e_{j}}\left(\pi^{-1}\left(Q_{j}\right)\right) \in \operatorname{Fix}\left(J(X), G, d / e_{j}\right)
$$

Proposition 1. (i) $\operatorname{Fix}_{0}\left(J(X), G, d / e_{j}\right)$ is non-empty for $j=1, \ldots, s$.
(ii) $\operatorname{Fix}_{0}\left(J(X), G, d / e_{0}\right)$ is non-empty, where $e_{0}=\operatorname{LCM}\left(e_{1}, \ldots, e_{s}\right)$.
(iii) $d / e_{0}$ is divisible by the positive integer $m_{0}$ in Theorem 4.

Proof. (i) is clear from the above argument.
(ii) Note that

$$
G C D\left(d / e_{1}, \ldots, d / e_{s}\right)=d / L C M\left(e_{1}, \ldots, e_{s}\right)
$$

Now (ii) follows from Lemma 19.
(iii) follows from (ii) and Theorem 4.

Put

$$
\begin{aligned}
\operatorname{Fix}(J(X), G) & =\bigcup_{m \in \mathbb{Z}} \operatorname{Fix}(J(X), G, m) \\
\operatorname{Fix}_{0}(J(X), G) & =\bigcup_{m \in \mathbb{Z}} \operatorname{Fix}_{0}(J(X), G, m)
\end{aligned}
$$

Then, by Lemma 19, we have:
Proposition 2. (i) $\operatorname{Fix}_{0}(J(X), G) \subset \operatorname{Fix}(J(X), G)$.
(ii) They are subgroups of $J(X)$.

A point in $\operatorname{Fix}(J(X), G)$ may not be in the image $W_{m}$ of $\Phi_{m}: S^{m}(X) \rightarrow$ $J(X)$, if $m<g$. So, we put

$$
\begin{aligned}
& \operatorname{Fix}^{*}(J(X), G)=\bigcup_{m \in \mathbb{Z}} \operatorname{Fix}(J(X), G, m) \cap W_{m} \\
& \operatorname{Fix}_{0}^{*}(J(X), G)=\bigcup_{m \in \mathbb{Z}>0} \operatorname{Fix}_{0}(J(X), G, m) \cap W_{m}
\end{aligned}
$$

(Here, we put $W_{m}=\Phi_{m}\left(S^{m}(X)\right)$, and so $W_{m}=J(X)$ if $m \geq g$.) Then, by (iv) of Lemma 15, we have:

Proposition 3. (i) $\operatorname{Fix}_{0}^{*}(J(X), G) \subset \operatorname{Fix}^{*}(J(X), G)$.
(ii) They are subsemigroups of $\operatorname{Fix}_{0}(J(X), G)$ and of $\operatorname{Fix}(J(X), G)$, respectively.

Finally, we give some examples.

## Example 1.

Let $X$ be a hyperelliptic Riemann surface of genus $g$, that is, the normalization of the algebraic curve defined by the equation

$$
X: y^{2}=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{2 g+2}\right)
$$

where $a_{1}, a_{2}, \ldots, a_{2 g+2}$ are mutually distinct complex numbers and $g \geq 2$. Let

$$
\pi: X \rightarrow \mathbb{P}^{1}, \quad(x, y) \longmapsto x
$$

be the Galois covering with $G=\{1, \varphi\}$, where $\mathbb{P}^{1}$ is the complex projective line and

$$
\varphi:(x, y) \longmapsto(x,-y)
$$

is the involution of $X$.
In this case, $g_{0}=0$ and so $l=g$. Hence $\operatorname{Fix}_{0}(J(X), G, m)=\operatorname{Fix}(J(X), G, m)$. Moreover, $\operatorname{Fix}(J(X), G, m)$ is non-empty for any integer $m$, (hence $m_{0}=$ $d / e_{0}=1$, in this case) and consists of $2^{2 g}$-points. Hence $\operatorname{Fix}(J(X), G, 0)$ coincides with the set $\Delta(0,2)$ of 2 -division points of 0 in $J(X)$.

In fact, put $p_{j}=\left(a_{j}, 0\right)$ for $j=1,2, \ldots, 2 g+2$. Then it is easy to see that

$$
\operatorname{Fix}(J(X), G, 1) \cap W_{1}=\left\{\Phi_{1}\left(p_{j}\right) \mid j=1,2, \ldots, 2 g+2\right\}
$$

In order to count the number of points in $\operatorname{Fix}(J(X), G, g)$, we divide our discussion into 2-cases:

Case 1. $g$ : odd.
$\operatorname{Fix}(J(X), G, g)$ consists of the following points:
$\Phi_{g}\left((g-1) p_{1}+p_{j}\right)-\binom{2 g+2}{1}$-points,
$\Phi_{g}\left((g-3) p_{1}+p_{j}+p_{k}+p_{l}\right)-\binom{2 g+2}{3}$-points, where $p_{j}, p_{k}$ and $p_{l}$ are mutually distinct points,
$\Phi_{g}\left(p_{j_{1}}+p_{j_{2}}+\cdots+p_{j_{g}}\right)-\binom{2 g+2}{g}$-points.
Case 2. $g$ : even.
$\operatorname{Fix}(J(X), G, g)$ consists of the following points:
$\Phi_{g}\left(g p_{1}\right)-\binom{2 g+2}{0}$-points,
$\Phi_{g}\left((g-2) p_{1}+p_{j}+p_{k}\right)-\binom{2 g+2}{2}$-points, where $p_{j}$ and $p_{k}$ are distinct points,
$\Phi_{g}\left(p_{j_{1}}+p_{j_{2}}+\cdots+p_{j_{g}}\right)-\binom{2 g+2}{g}$-points.
Thus our assertion follows from the following lemma:
Lemma 21. The following formula holds:
(i) If $n$ is odd, then

$$
\binom{2 n+2}{1}+\binom{2 n+2}{3}+\cdots+\binom{2 n+2}{n}=2^{2 n}
$$

(ii) If $n$ is even, then

$$
\binom{2 n+2}{0}+\binom{2 n+2}{2}+\cdots+\binom{2 n+2}{n}=2^{2 n}
$$

Proof. This formula follows from the relation between the $(2 n+1)$-th row and the $(2 n+2)$-th row in Pascal's triangle.

In a similar way, it is possible to count the number of points in

$$
\operatorname{Fix}(J(X), G, m) \cap W_{m}
$$

for $2 \leq m<g$.

## Example 2.

Let $X$ be the hyperelliptic Riemann surface of genus $g=2$ defined by

$$
X: y^{2}=x^{6}+1
$$

Let $G=\operatorname{Aut}(X)$. It is well-known (see e.g. Namba [2]) that there is an exact sequence

$$
1 \rightarrow Z \rightarrow G \rightarrow U \rightarrow 1
$$

where $Z$ is the center of $G$ :

$$
Z=\{1, \varphi\}, \quad \varphi:(x, y) \longmapsto(x,-y),
$$

and $U$ is the subgroup of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$, isomorphic to the dihedral group $D_{6}$ of order 12:

$$
\begin{gathered}
U=\langle\hat{\psi}, \hat{\eta}\rangle \\
\hat{\psi}: x \longmapsto \zeta^{2} x, \quad \hat{\eta}: x \longmapsto 1 / x
\end{gathered}
$$

where $\zeta=\exp (2 \pi \sqrt{-1} / 12)$. In fact, $G$ is generated by $\varphi, \psi$ and $\eta$, where

$$
\begin{aligned}
& \psi:(x, y) \longmapsto\left(\zeta^{2} x, y\right) \\
& \eta:(x, y) \longmapsto\left(1 / x, y / x^{3}\right) .
\end{aligned}
$$

In this case, $g_{0}=0$ and so $l=g=2$. Moreover $\pi: X \rightarrow X / G=\mathbb{P}^{1}$ is given by

$$
\pi:(x, y) \longmapsto x^{6}+1 / x^{6} .
$$

The branch locus of $\pi$ is

$$
B_{\pi}=\{-2,2, \infty\}
$$

with the ramification index $4,2,6$, respectively. Hence

$$
e_{0}=12, \quad d / e_{0}=2
$$

We show that $\operatorname{Fix}(J(X), G, 2)$ consists of one point. Note that $H^{0}\left(X, K_{X}\right)$ is 2-dimensional and has the basis $d x / y, x d x / y$. Hence the canonical linear system $\left|K_{X}\right|$ is 1-dimensional and gives the meromorphic function $f:(x, y) \longmapsto x$ on $X .\left|K_{X}\right|$ is $G$-invariant. For a positive divisor $D$ of degree 2 , which is not a canonical divisor, we have $|D|=\{D\}$, by Riemann-Roch theorem. Hence $|D|$ is not $G$-invariant. Hence $\operatorname{Fix}(J(X), G, 2)$ consists of one point.

It is clear that $\operatorname{Fix}(J(X), G, 1) \cap W_{1}$ is empty. But we show that $\operatorname{Fix}(J(X), G$, 1 ) is non-empty, (and so, $m_{0}=1$ in this case). For this purpose, it is enough to show that $\operatorname{Fix}(J(X), G, 3)$ is non-empty, for 2 and 3 are coprime.

Consider the meromorphic function

$$
h:(x, y) \longmapsto y /(x-\zeta)\left(x-\zeta^{5}\right)\left(x-\zeta^{9}\right) .
$$

Then

$$
\begin{aligned}
D_{0}(h) & =\left\{\left(\zeta^{3}, 0\right),\left(\zeta^{7}, 0\right),\left(\zeta^{11}, 0\right)\right\} \\
D_{\infty}(h) & =\left\{(\zeta, 0),\left(\zeta^{5}, 0\right),\left(\zeta^{9}, 0\right)\right\}
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
h \circ \varphi & =h, \\
h \circ \psi^{-1} & =1 / h, \\
h \circ \eta & =\zeta^{3} / h=\sqrt{-1} / h .
\end{aligned}
$$

Hence the linear pencil determined by $h$ is $G$-invariant.
Thus we conclude that $\operatorname{Fix}(J(X), G, m)$ consists of one point for all integer $m$ in this case.

## Example 3.

Let $X$ be a non-singular plane quartic curve, called Klein curve defined by the equation:

$$
X: X_{0} X_{1}^{3}+X_{1} X_{2}^{3}+X_{2} X_{0}^{3}=0
$$

where $\left(X_{0}: X_{1}: X_{2}\right)$ is a homogeneous coordinate in the complex projective plane $\mathbb{P}^{2}$. Then $g=g(X)=3$. Put $G=\operatorname{Aut}(X)$, which is known to be the simple group of order 168. It is known that $\pi: X \rightarrow \mathbb{P}^{1}=X / G$ is a Galois covering whose branch locus is $Q_{1}, Q_{2}, Q_{3}$ with the ramification indices $2,3,7$, respectively. Hence $g_{0}=0, l=g=3, e_{0}=42$ and $d / e_{0}=4$.

The canonical linear system $\left|K_{X}\right|$ is degree 4 , consists of line sections of the Klein curve and is $G$-invariant. Other complete linear systems of degree 4 are linear pencils (by Riemann-Roch theorem) and are not $G$-invariant. This is because there is no non-trivial homomorphism of $G$ into $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$. Hence $\operatorname{Fix}(J(X), G, 4)$ and so every non-empty $\operatorname{Fix}(J(X), G, m)$ consists of one point.

We show that $\operatorname{Fix}(J(X), G, 3)$ is empty. In fact, every linear pencil of degree 3 can be obtained by the linear projection of the Klein curve with the center a point on the curve (see, e.g. Namba [3, p. 372, Theorem 5.3.17]). Such a linear pencil can not be $G$-invariant by a geometric reason, or by the same reason as in the case of $m=4$. Other linear systems of degree 3 have dimension 0 and can not be $G$-invariant. Hence $\operatorname{Fix}(J(X), G, 3)$ is empty, so $\operatorname{Fix}(J(X), G, 1)$ is empty.

It is clear that $\operatorname{Fix}(J(X), G, 2) \cap W_{2}$ is empty. But we do not know that $\operatorname{Fix}(J(X), G, 2)$ itself is empty or not. Hence we do not know which is correct: $m_{0}=2$ or $m_{0}=4$ in this case.

## References

[1] R. D. M. Accola, Riemann Surfaces, Theta Functions and Abelian Automorphism Groups, Lecture Notes in Mathematics, Vol. 483. Springer-Verlag, Berlin-New York, 1975.
[2] M. Namba, Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. 5 (1981), no. 2, 319-338.
[3] , Geometry of Projective Algebraic Curves, Marcel Dekker, 1984.
[4] L. S. Pontryagin, Topological Groups, Translated from the second Russian edition by Arlen Brown Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966.

Professor emeritus Osaka University
Wakaba 2-20-17, Inagawa, Hyogo
666-0251, Japan
E-mail address: makoto-namba@maia.eonet.ne.jp

