J. Korean Math. Soc. ${\bf 53}$ (2016), No. 2, pp. 263–286 http://dx.doi.org/10.4134/JKMS.2016.53.2.263

GALOIS COVERINGS AND JACOBI VARIETIES OF COMPACT RIEMANN SURFACES

Μακότο Νάμβα

Dedicated to Professor Changho Keem on his 60th birthday

ABSTRACT. We discuss relations between Galois coverings of compact Riemann surfaces and their Jacobi varieties. We prove a theorem of a kind of Galois correspondence for Abelian subvarieties of Jacobi varieties. We also prove a theorem on the sets of points in Jacobi varieties fixed by Galois group actions.

1. Introduction

Let $\pi : X \to Y$ be a holomorphic map of a compact Riemann surface Xof genus g = g(X) onto a compact Riemann surface Y of genus $g_0 = g(Y)$. π is called a *Galois covering* if there is a biholomorphic map $\hat{\pi} : X/G \to Y$ such that $\pi = \hat{\pi} \circ pr$, where G is a finite subgroup of the automorphism group $\operatorname{Aut}(X)$ of X and $pr : X \to X/G$ is the canonical projection. G is called the *Galois group of* π . (We sometimes identify Y with X/G through $\hat{\pi}$.)

The purpose of this paper is to discuss relations between the Galois covering π and the Jacobi varieties J(X) and J(Y) of X and Y, respectively. After discussing properties of an Abelian subvariety $A(\pi)$ of J(X) which is isogeneous to J(Y) and each of whose points is fixed by the action of G, we prove a theorem of a kind of Galois correspondence (Theorem 3) for Abelian subvarieties of J(X).

Next, we discuss existence or non-existence of invariant linear systems on Xunder the action of G, using Abel-Jacobi maps $\Phi_m : S^m(X) \to J(X)$, where $S^m(X)$ is the *m*-th symmetric product of X. For a fixed positive integer m, the action of G on J(X) must be regarded as not linear action but affine action in order to be equivariant with the action on $S^m(X)$ with respect to Φ_m . So, we denote this action as (G, m)-action. We show that there is a positive integer m_0 such that the set $\operatorname{Fix}(J(X), G, m)$ of (G, m)-fixed points in J(X) is nonempty if and only if m is divisible by m_0 . Moreover, in this case, the number of

©2016 Korean Mathematical Society

Received November 17, 2014; Revised May 4, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 14H7; Secondary 14H30.

Key words and phrases. compact Riemann surface, Galois covering, Jacobi variety.

MAKOTO NAMBA

the points of $\operatorname{Fix}_0(J(X), G, m)$ (the set of points of $\operatorname{Fix}(J(X), G, m)$, which is *orthogonal* to $A(\pi)$) is finite and constant for all m divisible by m_0 (Theorem 4). Finally, we give some examples for determinations of existence or non-existence of invariant linear systems using Theorem 4.

2. Some linear projections

For a compact Riemann surface X of genus g, let $H^0(X, K_X)$ be the complex vector space of dimension g of holomorphic differentials on X. Let $\{\omega_1, \ldots, \omega_g\}$ be a basis of $H^0(X, K_X)$. Then the Jacobi variety J(X) of X is defined to be the complex torus \mathbb{C}^g/Γ_X , where Γ_X is the additive group of period vectors:

$$\Gamma_X = \{ (\int_{\gamma} \omega_1, \dots, \int_{\gamma} \omega_g) \mid \gamma \in H_1(X, \mathbb{Z}) \}.$$

J(X) is then an Abelian variety with the principal polarization given by its symplectic basis of the integral 1-st homology group $H_1(X,\mathbb{Z})$. J(X) is isomorphic to the Picard variety $\operatorname{Pic}^0(X)$ of X, where

$$\operatorname{Pic}^{0}(X) = \operatorname{Div}^{0}(X) / \{\operatorname{principal divisors}\},\$$

$$\operatorname{Div}^{0}(X) = \{D \mid D \text{ is a divisor of } X \text{ with } \operatorname{deg}(D) = 0\}$$

The isomorphism $\operatorname{Pic}^{0}(X) \cong J(X)$ is given by

$$D \pmod{(\text{principal divisors})} \longmapsto \sum_{i=1}^m \int_{q_i}^{p_i} \Omega \pmod{\Gamma_X},$$

via Abel's theorem, where $D = p_1 + \cdots + p_m - q_1 - \cdots - q_m$ and $\Omega = (\omega_1, \ldots, \omega_g)$.

Now let $\pi : X \to Y = X/G$ be a Galois covering of a compact Riemann surface X of genus g = g(X) onto a compact Riemann surface Y = X/G of genus $g_0 = g(Y)$ with the Galois group G, which is a finite subgroup of Aut(X). Henceforth, we assume

$$g \geq 2$$

We put

$$G = \{\varphi_1 = e, \dots, \varphi_d\}$$
 (*d* is the order of *G*).

For any $\varphi \in G$, the pull-back φ^* is a linear isomorphism of the *g*-dimensional complex vector space $H^0(X, K_X)$ of holomorphic differentials on X. We define a linear map M of $H^0(X, K_X)$ into itself by

$$M = \frac{1}{d}(\varphi_1^* + \dots + \varphi_d^*).$$

Then we can easily show the following properties:

(1)
$$M \circ \varphi^* = \varphi^* \circ M = M$$
 for all $\varphi \in G$,

(2) $M \circ M = M.$

The last equality means that M is a linear projection, so M' = I - M (I: the identity map) is also a linear projection. Thus $H^0(X, K_X)$ is decomposed into the direct sum:

$$H^0(X, K_X) = M(H^0(X, K_X)) \oplus M'(H^0(X, K_X)).$$

Lemma 1. (i)

$$M(H^{0}(X, K_{X})) = \{ \omega \in H^{0}(X, K_{X}) \mid M(\omega) = \omega \}$$

= $\{ \omega \in H^{0}(X, K_{X}) \mid \varphi^{*}(\omega) = \omega \text{ for all } \varphi \in G \}$
= $\{ \pi^{*}\eta \mid \eta \in H^{0}(Y, K_{Y}) \}.$

(ii) $M'(H^0(X, K_X)) = \text{Ker}(M)$, and for every $\varphi \in G$, φ^* acts linearly on $M'(H^0(X, K_X))$.

Proof. The assertion in (ii) is trivial. We prove (i). The first and the second equalities in (i) follow from the properties of M in (1) and (2). We prove the third equality.

It is clear that the pull-back over π of a holomorphic differential on Y is G-invariant. Conversely, we show that a G-invariant holomorphic differential ω can be written as the pull-back over π of a holomorphic differential on Y.

For any point p in X, there is a local coordinate z around p with z(p) = 0and a local coordinate w around $q = \pi(p)$ with w(q) = 0 such that π is locally written as

(3)
$$\pi: z \longmapsto w = z^e,$$

where e is a positive integer. ($e \ge 2$ if and only if p is a ramification point of π .) ω can be locally written as

$$\omega = f(z)dz,$$

where f(z) is a holomorphic function around p.

If e in (3) is 1, then the pull-back over π of the holomorphic differential f(w)dw defined locally around q is ω .

Suppose e in (3) is greater than or equal to 2. We expand f(z) into the power series of z as follows:

$$f(z) = c_0 + c_1 z + \cdots .$$

Let $\zeta = \exp(2\pi\sqrt{-1}/e)$ be a primitive root of 1. Then there is an element φ in G such that φ is locally written as

$$\varphi(z) = \zeta z,$$

because z and ζz are in the same fiber of π , while G acts transitively on every fiber of π . Now, by the assumption on ω , we have $\varphi^* \omega = \omega$, that is, locally,

(4)
$$f(\zeta z)d(\zeta z) = f(z)dz.$$

The left hand side of (4) can be written as

$$(\zeta c_0 + (\zeta)^2 c_1 z + \dots + (\zeta)^e c_{e-1} z^{e-1} + (\zeta)^{e+1} c_e z^e + \dots) dz.$$

Hence (4) implies

$$c_0 = 0, \ldots, c_{e-2} = 0, c_e = 0, \ldots$$

Hence

$$\omega = f(z)dz = (c_{e-1}z^{e-1} + c_{2e-1}z^{2e-1} + \cdots)dz = \pi^*(g(w)dw),$$

where g(w) is a holomorphic function around q whose power series expansion with respect to w is

$$g(w) = \frac{1}{e}c_{e-1} + \frac{1}{e}c_{2e-1}w + \cdots$$

The locally defined holomorphic differentials f(w)dw (for e = 1) and g(w)dw (for $e \ge 2$) can be patched up and define a global holomorphic differential η on Y such that $\pi^*\eta = \omega$.

From Lemma 1, we have:

Theorem 1. $g_0 = g(Y)$ vanishes if and only if $\varphi_1^* \omega + \cdots + \varphi_d^* \omega = 0$ for all $\omega \in H^0(X, K_X)$, where $G = \{\varphi_1, \ldots, \varphi_d\}$.

Let $\eta_1, \ldots, \eta_{g_0}$ be a basis of $H^0(Y, K_Y)$ and let $\omega_1, \ldots, \omega_l$ be a basis of $M'(H^0(X, K_X))$. $(l = g - g_0)$. In the sequel, we use the following basis of $H^0(X, K_X)$:

$$\{\pi^*\eta_1,\ldots,\pi^*\eta_{g_0},\omega_1,\ldots,\omega_l\}.$$

Then every point in the Jacobi variety J(X) can be written as

(5)
$$(z,w) \pmod{\Gamma_X},$$

where

$$z = (z_1, \dots, z_{g_0}) \in \mathbb{C}^{g_0},$$
$$w = (w_1, \dots, w_l) \in \mathbb{C}^l.$$

We sometimes use the 'coordinate' in (5) for a point of J(X). We put

 $\Omega = (\pi^* \eta_1, \dots, \pi^* \eta_{g_0}, \omega_1, \dots, \omega_l).$

Every $\varphi \in G$ induces an automorphism φ_* of $J(X) = \mathbb{C}^g / \Gamma_X$:

$$\sum_{j=1}^{m} \int_{q_j}^{p_j} \Omega \left(\text{mod } \Gamma_X \right) \longmapsto \sum_{j=1}^{m} \int_{\varphi(q_j)}^{\varphi(p_j)} \Omega \left(\text{mod } \Gamma_X \right) = \sum_{j=1}^{m} \int_{q_j}^{p_j} \varphi^*(\Omega) \left(\text{mod } \Gamma_X \right).$$

Hence we may regard φ_* as a linear transformation on \mathbb{C}^g , which induces the above $\varphi_* : J(X) \to J(X)$, as follows:

(6)
$$\varphi_* : \sum_{j=1}^m \int_{q_j}^{p_j} \Omega \longmapsto \sum_{j=1}^m \int_{q_j}^{p_j} \varphi^* \Omega.$$

(We remark that φ_* maps Γ_X onto itself, for

$$\varphi_*: \int_{\gamma} \Omega \longmapsto \int_{\varphi_*(\gamma)} \Omega \quad (= \int_{\gamma} \varphi^* \Omega),$$

where $\gamma \in H_1(X, \mathbb{Z})$.)

We may thus regard φ_* as a linear transformation on \mathbb{C}^g , using the coordinates (z, w) as follows:

(7)
$$\varphi_*: (z, w) \longmapsto (z, wB_{\varphi}),$$

where B_{φ} is an $(l \times l)$ -non-singular matrix defined by

$$\varphi^*(\omega_1,\ldots,\omega_l)=(\omega_1,\ldots,\omega_l)B_{\varphi}$$

(see (ii) of Lemma 1).

We define linear maps L and L' of \mathbb{C}^g into itself as follows:

$$L = \frac{1}{d}((\varphi_1)_* + \dots + (\varphi_d)_*),$$

$$L' = I - L.$$

Then L satisfies similar properties to M in (1) and (2):

$$L \circ \varphi_* = \varphi_* \circ L = L \text{ for all } \varphi \in G,$$

$$L \circ L = L.$$

Thus L and L' are linear projections of \mathbb{C}^{g} . In fact, they are linear projections as in (i) of the following lemma:

Lemma 2. (i) $L: (z, w) \mapsto (z, 0), L': (z, w) \mapsto (0, w).$ (ii) $\varphi_*(z, w) = (z, w)$ for all $\varphi \in G$ if and only if w = 0. (iii) $B_{\varphi_1} + \cdots + B_{\varphi_d} = 0$.

Proof. (i) By (6), we have

$$L = \frac{1}{d} \sum_{k=1}^{d} (\varphi_k)_* : \sum_{j=1}^{m} \int_{q_j}^{p_j} \Omega \longmapsto \sum_{j=1}^{m} \int_{q_j}^{p_j} M(\Omega) = \sum_{j=1}^{m} \int_{q_j}^{p_j} (\pi^* \Omega_0, 0)$$
$$= (\sum_{j=1}^{m} \int_{q_j}^{p_j} \pi^* \Omega_0, 0).$$

Hence $L: (z, w) \longmapsto (z, 0)$ and so $L': (z, w) \longmapsto (0, w)$.

(ii) $\varphi_*(z,0) = (z,0B_{\varphi}) = (z,0)$. Conversely, assume that $\varphi_*(z,w) = (z,w)$ for all $\varphi \in G$. Then L(z,w) = (z,w). The left hand side is equal to (z,0) by (i). Hence w = 0.

(iii) follows from (i) and (7).

The linear projections L and L' can be regarded as 'dual' operators to Mand M' in the following sense: The real 1-st homology group $H_1(X, \mathbb{R})$ of X

can be considered as the dual vector space over \mathbb{R} to $H^0(X, K_X)$ (which is regarded as a real vector space in this time), by the pairing

(8)
$$(\gamma, \omega) \in H_1(X, \mathbb{R}) \times H^0(X, K_X) \longmapsto \operatorname{Re}(\int_{\gamma} \omega) = \int_{\gamma} \operatorname{Re}(\omega) \in \mathbb{R},$$

where $\operatorname{Re}(\int_{\gamma} \omega)$ (resp. $\operatorname{Re}(\omega)$) is the real part of $\int_{\gamma} \omega$ (resp. ω). This is because the imaginary part can be written as

(9)
$$\operatorname{Im}(\int_{\gamma} \omega) = \int_{\gamma} \operatorname{Im}(\omega) = \int_{\gamma} \operatorname{Re}(-\sqrt{-1}\omega) = \operatorname{Re}(\int_{\gamma} (-\sqrt{-1}\omega)).$$

The group G acts on $H_1(X, \mathbb{R})$ as follows:

$$\gamma \longmapsto \varphi_*(\gamma).$$

The equality

$$\int_{\varphi_*(\gamma)} \omega = \int_{\gamma} \varphi^*(\omega)$$

for $\gamma \in H_1(X, \mathbb{R})$ and $\omega \in H^0(X, K_X)$, and (9) imply

$$(\varphi_*(\gamma), \omega) = (\gamma, \varphi^*(\omega))$$

for the pairing in (8). Hence φ_* is the dual linear operator to φ^* , so

(10)
$$M^* = \frac{1}{d} \sum_{j=1}^{d} (\varphi_j)_*$$

is the dual linear operator to M:

$$(M^*(\gamma), \omega) = (\gamma, M(\omega)).$$

 M^* and $M'^* = I - M^*$ are linear projections in $H_1(X, \mathbb{R})$.

Next, let \mathbb{A} be a linear isomorphism of $H_1(X, \mathbb{R})$ onto \mathbb{C}^g (over \mathbb{R}) defined by

$$\mathbb{A}(\gamma) = \int_{\gamma} \Omega \text{ for } \gamma \in H_1(X, \mathbb{R}).$$

Then we have easily the following equalities:

$$\mathbb{A}M^*\mathbb{A}^{-1} = L,$$
$$\mathbb{A}M'^*\mathbb{A}^{-1} = L'.$$

In this sense, L and L^\prime are 'dual' operators to M and $M^\prime,$ respectively. We also note

$$\mathbb{A}(H_1(X,\mathbb{Z})) = \Gamma_X$$

Thus the Jacobi variety J(X) is isomorphic (as a real torus) to

$$H_1(X,\mathbb{R})/H_1(X,\mathbb{Z}).$$

3. Some Abelian subvarieties

Using the linear isomorphism \mathbb{A} in the previous section, we can use $H_1(X, \mathbb{R})$ instead of \mathbb{C}^g for the discussion on discrete subgroups in it: By the expression of M^* in (10), we have

(11)
$$M^*(H_1(X,\mathbb{Z})) \subset \frac{1}{d}H_1(X,\mathbb{Z})$$

and so

(12)
$$M'^*(H_1(X,\mathbb{Z})) \subset \frac{1}{d}H_1(X,\mathbb{Z}).$$

Hence $M^*(H_1(X,\mathbb{Z}))$ and $M'^*(H_1(X,\mathbb{Z}))$ are discrete subgroups in $H_1(X,\mathbb{R})$ and

(13)
$$M^*(H_1(X,\mathbb{Z})) \oplus M'^*(H_1(X,\mathbb{Z})) \subset \frac{1}{d}H_1(X,\mathbb{Z}).$$

Moreover, from (11) and (12), we have

$$M^*(dH_1(X,\mathbb{Z})) \subset M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}),$$

and

$$M'^*(dH_1(X,\mathbb{Z})) \subset M'^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}).$$

Hence we have

$$dH_1(X,\mathbb{Z}) \subset (M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z})) \oplus (M'^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z})).$$

From this, together with (13), we see the ranks of these discrete subgroups are

$$\operatorname{rank}(M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z})) = \operatorname{rank}(M^*(H_1(X,\mathbb{Z}))) = 2g_0,$$

and

$$\operatorname{rank}(M^{\prime*}(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z})) = \operatorname{rank}(M^{\prime*}(H_1(X,\mathbb{Z}))) = 2l$$

Also, we see the following equalities:

(14)
$$M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}) = M^*(H_1(X,\mathbb{R})) \cap H_1(X,\mathbb{Z})$$

and

(15)
$$M'^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}) = M'^*(H_1(X,\mathbb{R})) \cap H_1(X,\mathbb{Z})$$

for $M^*M^* = M^*$ and $M'^*M'^* = M'^*$.

Thus, correspondingly, we have discrete subgroups

$$\Gamma_X \cap \{(z,0)\}, L(\Gamma_X)$$

of $\{(z,0)\} = L(\mathbb{C}^g)$ of rank $2g_0$, and discrete subgroups

$$\Gamma_X \cap \{(0,w)\}, L'(\Gamma_X)$$

of $\{(0, w)\} = L'(\mathbb{C}^g)$ of rank 2l. Consider the complex tori

$$A(\pi) = \{(z,0)\}/\Gamma_X \cap \{(z,0)\},\$$

MAKOTO NAMBA

$$B(\pi) = \{(z,0)\}/L(\Gamma_X), A'(\pi) = \{(0,w)\}/\Gamma_X \cap \{(0,w)\}, B'(\pi) = \{(0,w)\}/L'(\Gamma_X).$$

Since

$$\{(z,0)\}/\Gamma_X \cap \{(z,0)\} \cong (\{(z,0)\} + \Gamma_X)/\Gamma_X, \{(0,w)\}/\Gamma_X \cap \{(0,w)\} \cong (\{(0,w)\} + \Gamma_X)/\Gamma_X,$$

 $A(\pi)$ and $A'(\pi)$ are regarded as complex subtori, so regarded as Abelian subvarieties of J(X). Later, we show that $B(\pi)$ and $B'(\pi)$ are Abelian varieties dual to $A(\pi)$ and $A'(\pi)$, respectively.

Note first the inclusion relation

$$\Gamma_X \cap \{(z,0)\} = \Gamma_X \cap L(\Gamma_X) \subset L(\Gamma_X),$$

$$\Gamma_X \cap \{(0,w)\} = \Gamma_X \cap L'(\Gamma_X) \subset L'(\Gamma_X),$$

(see (14) and (15)), of discrete subgroups of the same ranks. Hence $B(\pi)$ and $B'(\pi)$ are isogeneous to $A(\pi)$ and $A'(\pi)$, respectively. Moreover,

Lemma 3. There are following exact sequences: (i) $0 \to A'(\pi) \to J(X) \to B(\pi) \to 0;$ (ii) $0 \to A(\pi) \to J(X) \to B'(\pi) \to 0.$

Proof. $L: \mathbb{C}^g \to \{(z,0)\} = L(\mathbb{C}^g)$ induces the homomorphism

$$L: J(X) = \mathbb{C}^g / \Gamma_X \to B(\pi) = (z, 0) / L(\Gamma_X)$$

whose kernel is clearly

$$(\Gamma_X + \{(0,w)\})/\Gamma_X \cong \{(0,w)\}/\Gamma_X \cap \{(0,w)\} = A'(\pi).$$

Hence we have the exact sequence (i). The exact sequence (ii) can be shown in a similar way. $\hfill \Box$

Next, note that $H_1(X, \mathbb{R})$ and $H^0(X, K_X)$ are dual locally compact abelian groups in the sense of Pontryagin [4, Chapter 6] with respect to the pairing

$$\langle \gamma, \omega \rangle = \exp(2\pi\sqrt{-1} \operatorname{Re}(\int_{\gamma} \omega))$$

for $\gamma \in H_1(X, \mathbb{R})$ and $\omega \in H^0(X, K_X)$:

$$H_1(X, \mathbb{R})^* = H^0(X, K_X),$$

 $H^0(X, K_X)^* = H_1(X, \mathbb{R}).$

We recall here some results on the duality in Pontryagin [4, Chapter 6]:

(i) In general, for a locally compact abelian group B, B^{**} is canonically isomorphic to B. We identify B and B^{**} through the canonical isomorphism.

(ii) For a (locally compact) subgroup A of a locally compact abelian group B, we put

$$A^{\perp} = \{ \beta \in B^* \mid \langle \beta, a \rangle = 1 \text{ for all } a \in A \}$$

and call it the annihilator of A. (Here \langle,\rangle is the pairing of B and its dual group $B^*.)$ Then we have

$$A^{\perp\perp} = A.$$

(iii) For an exact sequence of (locally compact) abelian groups:

 $0 \to A \to B \to C \to 0$

we have the exact sequence of dual groups:

$$0 \longleftarrow A^* \longleftarrow B^* \longleftarrow C^* \longleftarrow 0.$$

Moreover we have

$$C^* = A^{\perp}.$$

(iv) In particular, if $B = A \times C$ (direct product), then $B^* = A^* \times C^*$, and $A^* = C^{\perp}$ and $C^* = A^{\perp}$.

Now, returning to our case,

Lemma 4. (i) $M(H^0(X, K_X))^{\perp} = M'^*(H_1(X, \mathbb{R})).$ (ii) $M'(H^0(X, K_X))^{\perp} = M^*(H_1(X, \mathbb{R}))$ with respect to the pairing of $H^0(X, K_X)$ and $H_1(X, \mathbb{R}).$

Proof. (i) For $\gamma \in H_1(X, \mathbb{R})$, assume that

$$\langle \gamma, M(\omega) \rangle = 1$$
 for all $\omega \in H^0(X, K_X)$.

Then

$$1 = \langle \gamma, M(\omega) \rangle = \exp 2\pi \sqrt{-1} \operatorname{Re}(\int_{\gamma} M(\omega))$$
$$= \exp 2\pi \sqrt{-1} \operatorname{Re}(\int_{M^*(\gamma)} \omega) \quad \text{for all } \omega \in H^0(X, K_X).$$

This implies

$$\operatorname{Re}(\int_{M^*(\gamma)} \omega) \in \mathbb{Z}$$
 for all $\omega \in H^0(X, K_X)$.

Since $H^0(X, K_X)$ is a complex vector space, we have

$$\int_{M^*(\gamma)} \omega = 0 \quad \text{for all } \omega \in H^0(X, K_X).$$

Hence $M^*(\gamma) = 0$, that is, $\gamma \in M'^*(H_1(X,\mathbb{R}))$. This argument is reversible. Hence (i) is proved.

(ii) can be shown in a similar way.

Lemma 5. (i) $(M^*(H_1(X,\mathbb{R})))^* = M(H^0(X,K_X)).$ (ii) $(M'^*(H_1(X,\mathbb{R})))^* = M'(H^0(X,K_X)).$

Proof. By the decompositions into the direct sums:

$$H^{0}(X, K_{X}) = M(H^{0}(X, K_{X})) \oplus M'(H^{0}(X, K_{X})),$$

$$H_{1}(X, \mathbb{R}) = M^{*}(H_{1}(X, \mathbb{R})) \oplus M'^{*}(H_{1}(X, \mathbb{R}))$$

and by Lemma 4, the equalities (i) and (ii) are obtained.

Using the intersection number $\alpha \cdot \beta$ in $H_1(X, \mathbb{R})$, we define a linear isomorphism

$$\mathbb{B}: H_1(X, \mathbb{R}) \to H^0(X, K_X)$$

by

$$\operatorname{Re}(\int_{\beta} \mathbb{B}(\alpha)) = \alpha \cdot \beta \quad \text{for } \alpha, \beta \in H_1(X, \mathbb{R}).$$

Hence $H^0(X, K_X)$ is isomorphic to its dual group, that is, $H^0(X, K_X)$ is self-dual. Thus we may say that $H^0(X, K_X)$, $H_1(X, \mathbb{R})$ and (through the linear isomorphisms \mathbb{A} and \mathbb{AB}^{-1}) \mathbb{C}^g are self-dual.

Lemma 6. $M(\mathbb{B}(H_1(X,\mathbb{Z})))^{\perp} \cap M^*(H_1(X,\mathbb{R})) = H_1(X,\mathbb{Z}) \cap M^*(H_1(X,\mathbb{Z})).$

Proof. For $\alpha \in H_1(X, \mathbb{R})$, assume

$$\operatorname{Re}(\int_{M^*(\alpha)} M(\mathbb{B}(\beta))) \in \mathbb{Z}$$

for all $\beta \in H_1(X, \mathbb{Z})$. Then

$$\operatorname{Re}(\int_{M^{*}(\alpha)} M(\mathbb{B}(\beta))) = \operatorname{Re}(\int_{M^{*}M^{*}(\alpha)} \mathbb{B}(\beta))$$
$$= \operatorname{Re}(\int_{M^{*}(\alpha)} \mathbb{B}(\beta)) = \beta \cdot M^{*}(\alpha) \in \mathbb{Z}$$

for all $\beta \in H_1(X, \mathbb{Z})$. Hence

$$\gamma = M^*(\alpha) \in H_1(X, \mathbb{Z}).$$

Since

$$\gamma = M^*(\alpha) = M^*M^*(\alpha) = M^*(\gamma),$$

we conclude

$$\gamma \in M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}).$$

This argument can be reversible. Hence

$$M(\mathbb{B}(H_1(X,\mathbb{Z})))^{\perp} \cap M^*(H_1(X,\mathbb{R})) = H_1(X,\mathbb{Z}) \cap M^*(H_1(X,\mathbb{Z})).$$

By a similar argument, we have:

Lemma 7. $M'(\mathbb{B}(H_1(X,\mathbb{Z})))^{\perp} \cap M'^*(H_1(X,\mathbb{R})) = H_1(X,\mathbb{Z}) \cap M'^*(H_1(X,\mathbb{Z})).$

Now, consider the following exact sequence:

$$0 \to L(\Gamma_X) \cap \Gamma_X \to \{(z,0)\} \to A(\pi) \to 0.$$

Using the self-duality of \mathbb{C}^g and Lemma 6, the dual exact sequence of this exact sequence is given as follows:

$$0 \longleftarrow (L(\Gamma_X) \cap \Gamma_X)^* \longleftarrow \{(z,0)\} \longleftarrow L(\Gamma_X) \longleftarrow 0.$$

Hence we have

(16)
$$A(\pi)^* = (\{(z,0)\}/L(\Gamma_X) \cap \Gamma_X)^* = L(\Gamma_X),$$

(17)
$$B(\pi)^* = (\{(z,0)\}/L(\Gamma_X))^* = L(\Gamma_X) \cap \Gamma_X.$$

Thus $A(\pi)$ and $B(\pi)$ are dual Abelian varieties.

In a similar way, (using Lemma 7), we see that $A'(\pi)$ and $B'(\pi)$ are dual Abelian varieties.

4. Accola's theorem

We now define two homomorphisms

(18)
$$\pi_*: J(X) \to J(Y)$$

(19)
$$\pi^*: J(Y) \to J(X)$$

as follows:

(20)
$$\pi_*: \sum_{j=1}^m \int_{q_j}^{p_j} \Omega \pmod{\Gamma_X} \longmapsto \sum_{j=1}^m \int_{\pi(q_j)}^{\pi(p_j)} \Omega_0 \pmod{\Gamma_Y}$$

and

(21)
$$\pi^* : \sum_{j=1}^m \int_{Q_j}^{P_j} \Omega_0 \; (\text{mod } \Gamma_Y) \longmapsto \sum_{j=1}^m \sum_{k=1}^d \int_{q_{jk}}^{p_{jk}} \Omega \; (\text{mod } \Gamma_X),$$

where

$$\Omega = (\pi^* \eta_1, \dots, \pi^* \eta_{g_0}, \omega_1, \dots, \omega_l),$$

$$\Omega_0 = (\eta_1, \dots, \eta_{g_0}),$$

$$\pi^{-1}(P_j) = p_{j1} + \dots + p_{jd} \text{ and }$$

$$\pi^{-1}(Q_j) = q_{j1} + \dots + q_{jd}.$$

(Note that these homomorphisms are well defined, for $\pi_*(\gamma) \in H_1(Y,\mathbb{Z})$ for $\gamma \in H_1(X,\mathbb{Z})$, and $\pi^{-1}(\delta) \in H_1(X,\mathbb{Z})$ for $\delta \in H_1(Y,\mathbb{Z})$.) Then, using the 'coordinates' (z, w) in (5), these homomorphisms can be written as follows:

(22)
$$\pi_* : (z, w) \pmod{\Gamma_X} \longmapsto z \pmod{\Gamma_Y}$$

(23) $\pi^* : z \pmod{\Gamma_Y} \longmapsto (dz, 0) \pmod{\Gamma_X}.$

(22) follows from the following property of integration:

$$\int_{\pi(q)}^{\pi(p)} \Omega_0 = \int_q^p \pi^* \Omega_0$$

(23) follows from the property of integration and the G-invariance of the image in (21) (see (ii) of Lemma 2).

We first discuss the homomorphism π_* in (18). The homomorphism π_* can be decomposed as follows:

$$\pi_* = \hat{\pi}_* \circ L,$$

where

$$L: J(X) \to B(\pi) = \{(z,0)\}/L(\Gamma_X), (z,w) \pmod{\Gamma_X} \longmapsto (z,0) \pmod{L(\Gamma_X)}$$

and

$$\hat{\pi}_* : B(\pi) \to J(Y), (z, 0) \pmod{L(\Gamma_X)} \longmapsto z \pmod{\Gamma_Y}.$$

Here L and $\hat{\pi}_*$ are surjective homomorphism. Moreover, since dim $B(\pi) = g_0 = \dim J(Y)$, the kernel of $\hat{\pi}_*$ is a finite subgroup of $B(\pi)$. Hence,

Lemma 8. (i) The decomposition $\pi_* = \hat{\pi}_* \circ L$ gives the Stein factorization of the map π_* .

(ii) $B(\pi)$ (and so $A(\pi)$) is isogeneous to J(Y).

Moreover we have:

Lemma 9. The kernel $\operatorname{Ker}(\hat{\pi}_*)$ of $\hat{\pi}_*$ is isomorphic to $H_1(Y, \mathbb{Z})/\pi_*(H_1(X, \mathbb{Z}))$, which is isomorphic to the Galois group of the maximal unbranched abelian covering of Y in X.

Proof. Note that

$$\hat{\pi}_* : L(\Gamma_X) \to \Gamma_Y$$

is injective. Hence $L(\Gamma_X)$ and $\hat{\pi}_*(L(\Gamma_X)) = \pi_*(\Gamma_X)$ is isomorphic via $\hat{\pi}_*$. Hence $\hat{\pi}_* : B(\pi) \to J(Y)$ can be decomposed as follows:

$$\hat{\pi}_*: B(\pi) = \{(z,0)\}/L(\Gamma_X) \cong \mathbb{C}^{g_0}/\pi_*(\Gamma_X) \twoheadrightarrow \mathbb{C}^{g_0}/\Gamma_Y = J(Y).$$

Hence $\operatorname{Ker}(\hat{\pi}_*)$ is isomorphic to $\Gamma_Y/\pi_*(\Gamma_X)$, which is isomorphic to

$$H_1(Y,\mathbb{Z})/\pi_*(H_1(X,\mathbb{Z})).$$

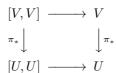
In order to show the last assertion, take a point q_0 in Y, which is not contained in the branch locus B_{π} of π . Take a point $p_0 \in \pi^{-1}(q_0)$. Put

$$U = \pi_1 (Y - B_\pi, q_0),$$

$$V = \pi_1 (X - \pi^{-1} (B_\pi), p_0)$$

(the fundamental groups). We may consider V as a normal subgroup of U such that $U/V \cong G$, through the injective homomorphism π_* .

Consider the following commutative diagram of injective homomorphisms:



This diagram induces the homomorphism

$$\pi_*: H_1(X - \pi^{-1}(B_\pi), \mathbb{Z}) \cong V/[V, V] \to H_1(Y - B_\pi, \mathbb{Z}) \cong U/[U, U].$$

Moreover, note that π_* maps a small circle γ_p around a point p in $\pi^{-1}(B_{\pi})$ to e-times of a circle δ_q around $q = \pi(p)$, where e is the ramification index of π at p. Hence π_* induces the homomorphism

$$\pi_* : H_1(X, \mathbb{Z}) \cong H_1(X - \pi^{-1}(B_\pi), \mathbb{Z}) / \langle \gamma_p \mid p \in \pi^{-1}(B_\pi) \rangle$$
$$\to H_1(Y, \mathbb{Z}) \cong H_1(Y - B_\pi, \mathbb{Z}) / \langle \delta_a \mid q \in B_\pi \rangle.$$

Note that U/V and [U, U]V/V are isomorphic to G and [G, G], respectively. Hence we conclude that $H_1(Y, \mathbb{Z})/\pi_*(H_1(X, \mathbb{Z}))$ is isomorphic to the Galois group of the maximal unbranched abelian covering of Y in X.

Next, we discuss the homomorphism π^* in (19).

Lemma 10. (i) If δ and δ' are homologous 1-cycles on Y, then $\pi^{-1}(\delta)$ and $\pi^{-1}(\delta')$ are homologous 1-cycles on X.

(ii) For $\delta \in H_1(Y, \mathbb{Z})$,

$$\int_{\pi^{-1}(\delta)} \Omega = \left(\int_{\pi^{-1}(\delta)} \pi^* \Omega_0, 0\right) = \left(d \int_{\delta} \Omega_0, 0\right) \in L(\Gamma_X) \cap \Gamma_X.$$

Proof. (i) is obvious. In the assertion (ii), the equality

$$\int_{\pi^{-1}(\delta)} \pi^* \Omega_0 = d \int_{\delta} \Omega_0$$

follows from a property of integration. Next, note that $\pi^{-1}(\delta)$ is G-invariant:

$$\varphi_*(\pi^{-1}(\delta)) = \pi^{-1}(\delta)$$

for all $\varphi \in G$. Hence

$$\varphi_*(\int_{\pi^{-1}(\delta)} \Omega) = \int_{\varphi_*(\pi^{-1}(\delta))} \Omega = \int_{\pi^{-1}(\delta)} \Omega$$

for all $\varphi \in G$. Hence the first equality in (ii) follows from (ii) of Lemma 2. The left hand side of the first equality of (ii) belongs to Γ_X , while the right hand side belongs to $L(\Gamma_X)$.

Lemma 10 implies that

$$\pi^*(\Gamma_Y) \subset L(\Gamma_X) \cap \Gamma_X.$$

Hence the image of the homomorphism π^* in (19) is $A(\pi) = \{(z,0)\}/L(\Gamma_X) \cap \Gamma_X$:

$$\pi^*: J(Y) \twoheadrightarrow A(\pi) \hookrightarrow J(X).$$

Moreover, note that

$$\pi^* : \mathbb{C}^{g_0} \to \{(z,0)\}$$
$$z \longmapsto (dz,0)$$

is bijective. Hence the kernel of π^* in (19) is isomorphic to

$$(L(\Gamma_X) \cap \Gamma_X)/\pi^*(\Gamma_Y),$$

which is isomorphic (via \mathbb{A}^{-1}) to

$$(M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}))/\pi^*(H_1(Y,\mathbb{Z})).$$

Thus we conclude:

Lemma 11. The kernel of the homomorphism $\pi^* : J(Y) \to J(X)$ is isomorphic to $(M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}))/\pi^*(H_1(Y,\mathbb{Z})).$

Now we are ready to prove the following theorem of Accola [1, p. 5]:

Theorem 2 (Accola). The kernel of the homomorphism $\pi^* : J(Y) \to J(X)$ is a finite group isomorphic to the dual group of the Galois group of the maximal unbranched abelian covering of Y in X.

Proof. By Lemma 9 and Lemma 11, it suffices to show that $(M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}))/\pi^*(H_1(Y,\mathbb{Z}))$ is isomorphic to the dual group of $\operatorname{Ker}(\hat{\pi}_*)$. From the exact sequence of abelian groups:

$$0 \to \operatorname{Ker}(\hat{\pi}_*) \to B(\pi) \to J(\pi) \to 0,$$

we have the exact sequence of the dual abelian groups:

$$0 \longleftarrow (\operatorname{Ker}(\hat{\pi}_*))^* \longleftarrow B(\pi)^* \longleftarrow J(\pi)^* \longleftarrow 0.$$

Note that $J(Y)^* \cong H_1(Y,\mathbb{Z})$ and $B(\pi)^* \cong (M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}))$ (see (17)). Also note that the dual homomorphism of $\hat{\pi}_*$ coincides with the injective homomorphism $\pi^* : H_1(Y,\mathbb{Z}) \to (M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}))$. Hence $(\operatorname{Ker}(\hat{\pi}_*))^*$ is isomorphic to $(M^*(H_1(X,\mathbb{Z})) \cap H_1(X,\mathbb{Z}))/\pi^*(H_1(Y,\mathbb{Z}))$. \Box

Remark 1. [1, p. 5] asserts more generally that Theorem 2 holds for (not necessarily Galois) finite covering $\pi : X \to Y$. (Note that the homomorphisms π_* and π^* in (18) and (19) can be defined as in (20) and (21) for (not necessarily Galois) finite coverings.)

5. Galois correspondence

In our point of view, $A(\pi)$ looks most important among Abelian subvarieties of J(X). Every point of $A(\pi)$ is fixed by every element of G (see (7)).

Lemma 12. If A is an Abelian subvariety of J(X), each of whose points is fixed by every element of G, then $A \subset A(\pi)$.

Proof. Any Abelian subvariety A of J(X) can be expressed as

$$A = \frac{S}{S \cap \Gamma_X} \cong \frac{S + \Gamma_X}{\Gamma_X},$$

where S is a linear subspace of \mathbb{C}^{g} . Suppose that every point of A is fixed by every element of G. For every vector $v \in S$ and every $\varphi \in G$, there exists a vector $a(v, \varphi) \in \Gamma_X$ such that

$$\varphi_*(v) = v + a(v, \varphi)$$
, that is, $a(v, \varphi) = \varphi_*(v) - v$.

Then, for a complex parameter t,

$$a(tv,\varphi) = \varphi_*(tv) - tv = t\varphi_*(v) - tv = ta(v,\varphi).$$

Since Γ_X is a discrete subgroup of \mathbb{C}^g , this relation implies $a(v, \varphi) = 0$. Hence

$$\varphi_*(v) = v$$
 for all $v \in S, \varphi \in G$.

By (ii) of Lemma 2, we have $v \in \{(z,0)\}$. That is, $S \subset \{(z,0)\}$. Hence $A \subset A(\pi)$.

For a subgroup H of G, the set of all points in J(X) fixed by every element of H forms a subgroup of J(X). Let A(H) be the connected component of 0 of the subgroup. This is the largest Abelian subvariety each of whose points is fixed by every element of H. By Lemma 12,

$$A(G) = A(\pi).$$

In general, we have

$$A(H) = A(\pi_H),$$

where

$$\pi_H: X \to X/H$$

is the canonical projection.

An Abelian subvariety A of J(X) is said to be *maximal* if A = A(H) for a subgroup H of G.

Theorem 3 (Galois correspondence). Assume $g_0 = g(X/G) \ge 2$. Then the correspondence

$$H \longmapsto A(H)$$

MAKOTO NAMBA

is bijective between the set $\{H\}$ of subgroups of G and the set $\{A\}$ of maximal Abelian subvarieties of J(X). The correspondence reverses the inclusion relations.

For the proof of Theorem 3, we first note the following relation:

$$A(G) \subset A(H) \subset J(X).$$

Next, we prove:

Lemma 13. For subgroups H and H' of G with $H \subsetneq H'$, (i) $A(G) \subset A(H') \subset A(H) \subset J(X)$. (ii) If the genus of X/H' satisfies $g(X/H') \ge 2$, then $A(H') \subsetneq A(H)$.

Proof. (i) is clear from the definition of A(H). We prove (ii). Let

$$\pi_{H,H'}: X/H \to X/H'$$

be the canonical projection. This is a finite covering. The Riemann-Hurwitz formula for $\pi_{H,H'}$ can be written as

$$2g(X/H) - 2 = d_1(2g(X/H') - 2) + \sum_p (e_p - 1)$$

where $d_1 = [H':H]$ is the mapping degree of $\pi_{H,H'}$ and $e_p(\geq 2)$ is the ramification index at the ramification point $p \in X/H$.

Since $d_1 \ge 2$ and $g(X/H') \ge 2$, we have

$$2g(X/H) - 2 \ge d_1(2g(X/H') - 2) > 2g(X/H') - 2.$$

Hence g(X/H) > g(X/H'). Hence

$$\dim A(H) = g(X/H) > g(X/H') = \dim A(H').$$

Now for an Abelian subvariety A of J(X), we put

 $H(A) = \{ \varphi \in G \mid \text{every point of } A \text{ is fixed by } \varphi \}.$

Then H(A) is a subgroup of G.

Lemma 14. If $g_0 = g(X/G) \ge 2$, then H(A(H)) = H.

Proof. Put H' = H(A(H)). Then by the definition, we have $H \subset H'$. Hence $A(H') \subset A(H)$. But note that every point of A(H) is fixed by every element of H'. Hence, by the maximality of A(H'), we have $A(H) \subset A(H')$. Hence A(H) = A(H'). Now, by Lemma 13, we have H = H'.

Now Theorem 3 follows from Lemma 13 and Lemma 14.

6. *G*-invariant linear systems

We want to look for G-invariant linear systems on X, making use of J(X)and its Abelian subvariety $A(\pi)$. A linear system Λ on X is said to be Ginvariant if every element of G maps every divisor in Λ to a divisor in Λ .

Lemma 15. (i) For a (not necessarily positive) divisor D on X, assume that $D \sim \varphi(D)$ (linearly equivalent) for all $\varphi \in G$. Then for any (not necessarily positive) divisor E with $E \sim D$, we have $E \sim \varphi(E)$ for all $\varphi \in G$.

(ii) If a linear system Λ is G-invariant, then the complete linear system |D| containing Λ is G-invariant.

(iii) If a divisor D on X is G-invariant, then the complete linear system |D| is G-invariant.

(iv) If |D| and |D'| are G-invariant, then |D + D'| is G-invariant.

Proof. (i) There is a meromorphic function f on X such that

$$D - E = (f) = D_f(0) - D_f(\infty),$$

where (f), $D_f(0)$, $D_f(\infty)$ are the principal divisor of f, the zero-divisor of fand the polar-divisor of f, respectively. Then, for any element φ in G, we have

$$\varphi(D) - \varphi(E) = \varphi(D_f(0)) - \varphi(D_f(\infty)) = (f \circ \varphi^{-1}).$$

Hence $\varphi(D)$ and $\varphi(E)$ are linearly equivalent. By the assumption, D and $\varphi(D)$ are linearly equivalent. Hence, $\varphi(E)$ is linearly equivalent to D and so, linearly equivalent to E.

(ii), (iii) and (iv) follow from (i).

Hence, our first task is to look for G-invariant complete linear systems on X. Complete linear systems appear as the inverse images of points in J(X) of the Abel-Jacobi map Φ_m $(m \in \mathbb{Z}_{>0})$. Here the Abel-Jacobi map

$$\Phi_m: S^m(X) \to J(X)$$

 $(S^m(X))$: the *m*-th symmetric product of X is defined as follows: Take a point p_0 in X and fix it. For a divisor $D = p_1 + \cdots + p_m$ in $S^m(X)$, Φ_m maps D to

$$\sum_{j=1}^m \int_{p_0}^{p_j} \Omega \pmod{\Gamma_X}.$$

The group G acts on $S^m(X)$. So we must modify the action of G on J(X) so that Φ_m becomes equivariant under the actions:

$$\sum_{j=1}^{m} \int_{p_0}^{p_j} \Omega \pmod{\Gamma_X} \longmapsto \sum_{j=1}^{m} \int_{p_0}^{\varphi(p_j)} \Omega \pmod{\Gamma_X}$$
$$= \sum_{j=1}^{m} \int_{\varphi(p_0)}^{\varphi(p_j)} \Omega + m \int_{p_0}^{\varphi(p_0)} \Omega \pmod{\Gamma_X}$$

MAKOTO NAMBA

$$=\sum_{j=1}^m \int_{p_0}^{p_j} \varphi^*(\Omega) + m \int_{p_0}^{\varphi(p_0)} \Omega \; (\text{mod } \Gamma_X),$$

where $\varphi \in G$. Thus we define the modified action of G on J(X), which we denote (G, m)-action, as follows: (Writing $\varphi^{(m)}$, instead of φ),

(24)
$$\varphi^{(m)}((z,w) \pmod{\Gamma_X}) = \varphi_*(z,w) + mv_{\varphi} \pmod{\Gamma_X}$$

(25)
$$= (z, wB_{\varphi}) + mv_{\varphi} \pmod{\Gamma_X},$$

where $v_{\varphi} = \int_{p_0}^{\varphi(p_0)} \Omega$.

Hence we may define an affine transformation $\varphi^{(m)}$ on \mathbb{C}^{g} , which induces the action $\varphi^{(m)}$ on J(X), as follows:

(26)
$$\varphi^{(m)}(z,w) = \varphi_*(z,w) + mv_{\varphi} = (z,wB_{\varphi}) + mv_{\varphi},$$

where $v_{\varphi} = \int_{p_0}^{\varphi(p_0)} \Omega$.

Now, for any (not necessarily positive) integer m, we define the (G, m)-action on J(X) and on \mathbb{C}^g by (24),(25) and (26), respectively.

By (24) and (25), a point $(z_0, w_0) \pmod{\Gamma_X}$ in J(X) is a fixed point of $\varphi^{(m)} \ (m \in \mathbb{Z})$ if and only if

$$(z_0, w_0 B_{\varphi}) + m v_{\varphi} \pmod{\Gamma_X}, = (z_0, w_0) \pmod{\Gamma_X}.$$

This occurs if and only if

$$(0, w_0 B_{\varphi}) + m v_{\varphi} \pmod{\Gamma_X} = (0, w_0) \pmod{\Gamma_X}.$$

That is, this occurs if and only if

 $\varphi^{(m)}((0, w_0) \pmod{\Gamma_X}) = \varphi_*(0, w_0) + mv_\varphi \pmod{\Gamma_X} = (0, w_0) \pmod{\Gamma_X}.$

That is, $(z_0, w_0) (\text{mod}\Gamma_X)$ is a fixed point of $\varphi^{(m)}$ if and only if $(0, w_0) (\text{mod}\Gamma_X)$ is a fixed point of $\varphi^{(m)}$.

We put, for $m \in \mathbb{Z}$,

$$\operatorname{Fix}(J(X), G, m) = \{(z_0, w_0) \pmod{\Gamma_X} \in J(X) \mid (z_0, w_0) \pmod{\Gamma_X}\}$$

is a fixed point of
$$\varphi^{(m)}$$
 for all $\varphi \in G$,

and

$$\operatorname{Fix}_0(J(X), G, m) = \{(0, w_0) \pmod{\Gamma_X} \in J(X) \mid (0, w_0) \pmod{\Gamma_X}$$

is a fixed point of $\varphi^{(m)}$ for all $\varphi \in G\}.$

We may express $Fix_0(J(X), G, m)$ the set of points of Fix(J(X), G, m), which is *orthogonal to* $A(\pi)$. Then the above discussion implies:

Lemma 16. (i) Fix(J(X), G, m) is non-empty if and only if $Fix_0(J(X), G, m)$ is non-empty.

(ii) If Fix(J(X), G, m) is non-empty, then

$$\operatorname{Fix}(J(X), G, m) = \operatorname{Fix}_0(J(X), G, m) + A(\pi),$$

where the addition is the addition in J(X).

Thus we may restrict our discussion mainly to $Fix_0(J(X), G, m)$.

Lemma 17. $Fix_0(J(X), G, 0)$ is non-empty and is contained in the set of ddivision points of 0 of J(X).

Proof. $0 = (0,0) \pmod{\Gamma_X}$ is a point of $\operatorname{Fix}_0(J(X), G, 0)$.

For a point $(0, w_0) \pmod{\Gamma_X}$ of $\operatorname{Fix}_0(J(X), G, 0)$, we have $(0, w_0 B_{\varphi}) = (0, w_0) \pmod{\Gamma_X}$ for all $\varphi \in G$. We add this equality for $\varphi = \varphi_1, \ldots, \varphi_d$ and get

$$(0, w_0(B_{\varphi_1} + \dots + B_{\varphi_d})) = (0, dw_0) = d(0, w_0) \pmod{\Gamma_X}.$$

The left hand side is equal to (0,0) by (iii) of Lemma 2. Hence $(0,w_0)$ is a *d*-division point of 0 of J(X).

The set $\Delta_0(0, d)$ of *d*-division points of 0 of J(X) of the form (0, w) forms a finite subgroup of J(X) of order d^{2l} , where $l = g - g_0$. Since the sum of two points of $\operatorname{Fix}_0(J(X), G, 0)$ is again a point of $\operatorname{Fix}_0(J(X), G, 0)$, $\operatorname{Fix}_0(J(X), G, 0)$ is a subgroup of the finite subgroup $\Delta_0(0, d)$.

Lemma 18. For a point $(0, w_0) \pmod{\Gamma_X} \in Fix_0(J(X), G, m)$,

 $\operatorname{Fix}_0(J(X), G, m) = \operatorname{Fix}_0(J(X), G, 0) + (0, w_0) \pmod{\Gamma_X},$

where the addition is the addition in J(X).

Proof. Take a point $(0, w) \pmod{\Gamma_X} \in Fix_0(J(X), G, 0)$. Then

 $\varphi_*(0, w) \pmod{\Gamma_X} = (0, w) \pmod{\Gamma_X}$

for all $\varphi \in G$. On the other hand, we have

(27) $\varphi_*(0, w_0) + mv_{\varphi} \pmod{\Gamma_X} = (0, w_0) \pmod{\Gamma_X}$

for all $\varphi \in G$. Adding these equality, we have

 $\varphi_*(0, w + w_0) + mv_\varphi \pmod{\Gamma_X} = (0, w + w_0) \pmod{\Gamma_X}$

for all $\varphi \in G$. Hence

$$\operatorname{Fix}_0(J(X), G, m) \supset \operatorname{Fix}_0(J(X), G, 0) + d(0, w_0) \pmod{\Gamma_X}.$$

Conversely, for a point $(0, w'_0) \pmod{\Gamma_X}$, we have,

 $\varphi_*(0, w_0') + mv_{\varphi} \pmod{\Gamma_X} = (0, w_0') \pmod{\Gamma_X}$

for all $\varphi \in G$. Subtracting (27) from this equality, we have

$$\varphi_*(0, w'_0 - w_0) \pmod{\Gamma_X} = (0, w'_0 - w_0) \pmod{\Gamma_X}$$

for all $\varphi \in G$. Hence $((0, w'_0) - (0, w_0)) \pmod{\Gamma_X} \in \operatorname{Fix}_0(J(X), G, 0)$.

A similar argument to the proof of Lemma 18 shows the following lemma:

Lemma 19. (i) For m and m' in \mathbb{Z} , if $\operatorname{Fix}_0(J(X), G, m)$ and $\operatorname{Fix}_0(J(X), G, m')$ are non-empty, then $\operatorname{Fix}_0(J(X), G, m+m')$ is non-empty and $\operatorname{Fix}_0(J(X), G, m)$ $+\operatorname{Fix}_0(J(X), G, m') = \operatorname{Fix}_0(J(X), G, m+m')$, where the addition is the addition in J(X).

(ii) $\operatorname{Fix}_0(J(X), G, m) + \cdots + \operatorname{Fix}_0(J(X), G, m) = \operatorname{Fix}_0(J(X), G, km)$ for $m \in \mathbb{Z}$, where the left hand side is the k-times summation in J(X).

(iii) $\operatorname{Fix}_0(J(X), G, -m) = -\operatorname{Fix}_0(J(X), G, m)$ for $m \in \mathbb{Z}$.

Lemma 20. $Fix_0(J(X), G, d)$ is non-empty.

Proof. For any point $P \in Y$, the divisor

$$\pi^{-1}(P) = p_1 + \dots + p_d \in S^d(X)$$

is fixed by every element of G. Hence, by (iii) of Lemma 15,

$$\Phi_d(\pi^{-1}(P)) \in \operatorname{Fix}(J(X), G, d).$$

Hence $Fix_0(J(X), G, d)$ is non-empty.

Now, Lemma 18, Lemma 19 and Lemma 20 imply:

Theorem 4. (i) There is a positive integer m_0 with $m_0 \mid d$ such that, for $m \in \mathbb{Z}$, $Fix_0(J(X), G, m)$ is non-empty if and only if m is divisible by m_0 .

(ii) The number of points of non-empty $Fix_0(J(X), G, m)$ is constant for m.

Let

$$B_{\pi} = \{Q_1, \dots, Q_s\} \quad (\subset Y)$$

be the set of all branch points of π . Put

$$\pi^{-1}(Q_j) = q_{j1} + \dots + q_{jl_j},$$

for j = 1, ..., s, where $l_j = d/e_j$ and $e_j (\geq 2)$ is the ramification index at q_{jk} for $k = 1, ..., l_j$.

The divisor $\pi^{-1}(Q_j)$ is fixed by every element of G. Hence, by (iii) of Lemma 15,

$$\Phi_{d/e_j}(\pi^{-1}(Q_j)) \in \operatorname{Fix}(J(X), G, d/e_j).$$

Proposition 1. (i) $\operatorname{Fix}_0(J(X), G, d/e_j)$ is non-empty for $j = 1, \ldots, s$. (ii) $\operatorname{Fix}_0(J(X), G, d/e_0)$ is non-empty, where $e_0 = LCM(e_1, \ldots, e_s)$.

(iii) d/e_0 is divisible by the positive integer m_0 in Theorem 4.

Proof. (i) is clear from the above argument.

(ii) Note that

$$GCD(d/e_1,\ldots,d/e_s) = d/LCM(e_1,\ldots,e_s).$$

Now (ii) follows from Lemma 19.

(iii) follows from (ii) and Theorem 4.

282

Put

$$\begin{split} \operatorname{Fix}(J(X),G) &= \bigcup_{m \in \mathbb{Z}} \operatorname{Fix}(J(X),G,m), \\ \operatorname{Fix}_0(J(X),G) &= \bigcup_{m \in \mathbb{Z}} \operatorname{Fix}_0(J(X),G,m). \end{split}$$

Then, by Lemma 19, we have:

Proposition 2. (i) $\operatorname{Fix}_0(J(X), G) \subset \operatorname{Fix}(J(X), G)$. (ii) They are subgroups of J(X).

A point in Fix(J(X), G) may not be in the image W_m of $\Phi_m : S^m(X) \to J(X)$, if m < g. So, we put

$$\operatorname{Fix}^*(J(X), G) = \bigcup_{m \in \mathbb{Z}_{>0}} \operatorname{Fix}(J(X), G, m) \cap W_m,$$

$$\operatorname{Fix}^*_0(J(X), G) = \bigcup_{m \in \mathbb{Z}_{>0}} \operatorname{Fix}_0(J(X), G, m) \cap W_m.$$

(Here, we put $W_m = \Phi_m(S^m(X))$, and so $W_m = J(X)$ if $m \ge g$.) Then, by (iv) of Lemma 15, we have:

Proposition 3. (i) $\operatorname{Fix}_{0}^{*}(J(X), G) \subset \operatorname{Fix}^{*}(J(X), G)$.

(ii) They are subsemigroups of $Fix_0(J(X), G)$ and of Fix(J(X), G), respectively.

Finally, we give some examples.

Example 1.

Let X be a hyperelliptic Riemann surface of genus g, that is, the normalization of the algebraic curve defined by the equation

$$X: y^{2} = (x - a_{1})(x - a_{2}) \cdots (x - a_{2g+2}),$$

where $a_1, a_2, \ldots, a_{2g+2}$ are mutually distinct complex numbers and $g \ge 2$. Let

$$\pi: X \to \mathbb{P}^1, \quad (x, y) \longmapsto x$$

be the Galois covering with $G=\{1,\varphi\},$ where \mathbb{P}^1 is the complex projective line and

$$\varphi: (x,y) \longmapsto (x,-y)$$

is the involution of X.

In this case, $g_0 = 0$ and so l = g. Hence $\operatorname{Fix}_0(J(X), G, m) = \operatorname{Fix}(J(X), G, m)$. Moreover, $\operatorname{Fix}(J(X), G, m)$ is non-empty for any integer m, (hence $m_0 = d/e_0 = 1$, in this case) and consists of 2^{2g} -points. Hence $\operatorname{Fix}(J(X), G, 0)$ coincides with the set $\Delta(0, 2)$ of 2-division points of 0 in J(X).

In fact, put $p_j = (a_j, 0)$ for j = 1, 2, ..., 2g + 2. Then it is easy to see that $F_{j=1}^{i_j}(I(X) - (1) - W_j - (\Phi_j(m_j) + i - 1) - 2g + 2)$

Fix
$$(J(X), G, 1) \cap W_1 = \{\Phi_1(p_j) \mid j = 1, 2, \dots, 2g + 2\}.$$

In order to count the number of points in Fix(J(X), G, g), we divide our discussion into 2-cases:

Case 1. g: odd. Fix(J(X), G, g) consists of the following points: $\Phi_g((g-1)p_1 + p_j) - \binom{2g+2}{1}$ -points, $\Phi_g((g-3)p_1 + p_j + p_k + p_l) - \binom{2g+2}{3}$ -points, where p_j, p_k and p_l are mutually distinct points,

 $\begin{array}{l} \Phi_g(p_{j_1}+p_{j_2}+\cdots+p_{j_g})-\binom{2g+2}{g}\text{-points.}\\ \text{Case 2. }g:\text{even.}\\ \text{Fix}(J(X),G,g) \text{ consists of the following points:}\\ \Phi_g(gp_1)-\binom{2g+2}{0}\text{-points,}\\ \Phi_g((g-2)p_1+p_j+p_k)-\binom{2g+2}{2}\text{-points, where }p_j \text{ and }p_k \text{ are distinct points,}\\ \cdots\\ \Phi_g(p_{j_1}+p_{j_2}+\cdots+p_{j_g})-\binom{2g+2}{g}\text{-points.}\\ \text{Thus our assertion follows from the following lemma:} \end{array}$

Lemma 21. The following formula holds:

(i) If n is odd, then

$$\binom{2n+2}{1} + \binom{2n+2}{3} + \dots + \binom{2n+2}{n} = 2^{2n}.$$

(ii) If n is even, then

$$\binom{2n+2}{0} + \binom{2n+2}{2} + \dots + \binom{2n+2}{n} = 2^{2n}.$$

Proof. This formula follows from the relation between the (2n + 1)-th row and the (2n + 2)-th row in Pascal's triangle.

In a similar way, it is possible to count the number of points in

$$\operatorname{Fix}(J(X), G, m) \cap W_m$$

for $2 \leq m < g$.

Example 2.

Let X be the hyperelliptic Riemann surface of genus g = 2 defined by

$$X: y^2 = x^6 + 1$$

Let G = Aut(X). It is well-known (see e.g. Namba [2]) that there is an exact sequence

$$1 \to Z \to G \to U \to 1,$$

where Z is the center of G:

$$Z = \{1, \varphi\}, \quad \varphi : (x, y) \longmapsto (x, -y),$$

284

. . .

and U is the subgroup of $\operatorname{Aut}(\mathbb{P}^1)$, isomorphic to the dihedral group D_6 of order 12:

$$\begin{split} U &= \langle \hat{\psi}, \hat{\eta} \rangle, \\ \hat{\psi}: x \longmapsto \zeta^2 x, \quad \hat{\eta}: x \longmapsto 1/x, \end{split}$$

where $\zeta = \exp(2\pi\sqrt{-1}/12)$. In fact, G is generated by φ, ψ and η , where

$$\psi: (x, y) \longmapsto (\zeta^2 x, y),$$

$$\eta: (x, y) \longmapsto (1/x, y/x^3).$$

In this case, $g_0 = 0$ and so l = g = 2. Moreover $\pi : X \to X/G = \mathbb{P}^1$ is given by

$$\pi: (x, y) \longmapsto x^6 + 1/x^6.$$

The branch locus of π is

$$B_{\pi} = \{-2, 2, \infty\},\$$

with the ramification index 4, 2, 6, respectively. Hence

$$e_0 = 12, \quad d/e_0 = 2.$$

We show that $\operatorname{Fix}(J(X), G, 2)$ consists of one point. Note that $H^0(X, K_X)$ is 2-dimensional and has the basis dx/y, xdx/y. Hence the canonical linear system $|K_X|$ is 1-dimensional and gives the meromorphic function $f: (x, y) \mapsto x$ on X. $|K_X|$ is *G*-invariant. For a positive divisor *D* of degree 2, which is not a canonical divisor, we have $|D| = \{D\}$, by Riemann-Roch theorem. Hence |D|is not *G*-invariant. Hence $\operatorname{Fix}(J(X), G, 2)$ consists of one point.

It is clear that $Fix(J(X), G, 1) \cap W_1$ is empty. But we show that Fix(J(X), G, 1) is non-empty, (and so, $m_0 = 1$ in this case). For this purpose, it is enough to show that Fix(J(X), G, 3) is non-empty, for 2 and 3 are coprime.

Consider the meromorphic function

$$h: (x,y) \longmapsto y/(x-\zeta)(x-\zeta^5)(x-\zeta^9).$$

Then

$$D_0(h) = \{(\zeta^3, 0), (\zeta^7, 0), (\zeta^{11}, 0)\},\$$

$$D_{\infty}(h) = \{(\zeta, 0), (\zeta^5, 0), (\zeta^9, 0)\}.$$

Moreover, we have

$$\begin{split} h \circ \varphi &= h, \\ h \circ \psi^{-1} &= 1/h, \\ h \circ \eta &= \zeta^3/h = \sqrt{-1}/h. \end{split}$$

Hence the linear pencil determined by h is G-invariant.

Thus we conclude that Fix(J(X), G, m) consists of one point for all integer m in this case.

Example 3.

Let X be a non-singular plane quartic curve, called *Klein curve* defined by the equation:

$$X: X_0 X_1^3 + X_1 X_2^3 + X_2 X_0^3 = 0,$$

where $(X_0: X_1: X_2)$ is a homogeneous coordinate in the complex projective plane \mathbb{P}^2 . Then g = g(X) = 3. Put $G = \operatorname{Aut}(X)$, which is known to be the simple group of order 168. It is known that $\pi: X \to \mathbb{P}^1 = X/G$ is a Galois covering whose branch locus is Q_1, Q_2, Q_3 with the ramification indices 2,3,7, respectively. Hence $g_0 = 0$, l = g = 3, $e_0 = 42$ and $d/e_0 = 4$.

The canonical linear system $|K_X|$ is degree 4, consists of line sections of the Klein curve and is *G*-invariant. Other complete linear systems of degree 4 are linear pencils (by Riemann-Roch theorem) and are not *G*-invariant. This is because there is no non-trivial homomorphism of *G* into Aut(\mathbb{P}^1). Hence $\operatorname{Fix}(J(X), G, 4)$ and so every non-empty $\operatorname{Fix}(J(X), G, m)$ consists of one point.

We show that Fix(J(X), G, 3) is empty. In fact, every linear pencil of degree 3 can be obtained by the linear projection of the Klein curve with the center a point on the curve (see, e.g. Namba [3, p. 372, Theorem 5.3.17]). Such a linear pencil can not be *G*-invariant by a geometric reason, or by the same reason as in the case of m = 4. Other linear systems of degree 3 have dimension 0 and can not be *G*-invariant. Hence Fix(J(X), G, 3) is empty, so Fix(J(X), G, 1) is empty.

It is clear that $Fix(J(X), G, 2) \cap W_2$ is empty. But we do not know that Fix(J(X), G, 2) itself is empty or not. Hence we do not know which is correct: $m_0 = 2$ or $m_0 = 4$ in this case.

References

- R. D. M. Accola, Riemann Surfaces, Theta Functions and Abelian Automorphism Groups, Lecture Notes in Mathematics, Vol. 483. Springer-Verlag, Berlin-New York, 1975.
- [2] M. Namba, Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. 5 (1981), no. 2, 319–338.
- [3] _____, Geometry of Projective Algebraic Curves, Marcel Dekker, 1984.
- [4] L. S. Pontryagin, *Topological Groups*, Translated from the second Russian edition by Arlen Brown Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966.

PROFESSOR EMERITUS OSAKA UNIVERSITY WAKABA 2-20-17, INAGAWA, HYOGO 666-0251, JAPAN *E-mail address*: makoto-namba@maia.eonet.ne.jp