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1. Introduction

A Galois connection is an important mathematical tool for algebraic structure, data analysis,
and knowledge processing [1-10]. Hájek [11] introduced a complete residuated lattice L that
is an algebraic structure for many-valued logic. A context consists of (U, V,R), where U is a
set of objects, V is a set of attributes, and R is a relation between U and V . Bělohlávek [1-3]
developed a notion of fuzzy contexts using Galois connections with R ∈ LX×Y on L.

In this paper, we investigate properties of fuzzy Galois (dual Galois, residuated, and dual
residuated) connections in L and give their examples. In particular, we study fuzzy Galois
(dual Galois, residuated, and dual residuated) connections induced by L-fuzzy relations.

Definition 1.1. [11, 12] An algebra (L,∧,∨,�,→, 0, 1) is called a complete residuated
lattice if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧, 1, 0) is a complete lattice with the greatest element 1 and the least
element 0;

(C2) (L,�, 1) is a commutative monoid;
(C3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

Remark 1.2. [11, 12] (1) A completely distributive lattice L = (L,≤,∨,∧ = �,→, 1, 0) is
a complete residuated lattice defined by

x→ y =
∨
{z | x ∧ z ≤ y}.

In particular, the unit interval ([0, 1],∨,∧ = �,→, 0, 1) is a complete residuated lattice
defined by

x→ y =
∨
{z | x ∧ z ≤ y}.

(2) The unit interval with a left-continuous t-norm �, ([0, 1],∨,∧,�,→, 0, 1) , is a complete
residuated lattice defined by
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x→ y =
∨
{z | x� z ≤ y}.

In this paper, we assume that (L,∧,∨,�,→, 0, 1) is a com-
plete residuated lattice with the law of double negation, i.e.,
a = a∗∗ where a = a→ 0.

Lemma 1.3. [12] For each x, y, z, xi, yi ∈ L, we have the
following properties.

(1) If y ≤ z, (x � y) ≤ (x � z), x → y ≤ x → z, and
z → x ≤ y → x.

(2) x� y ≤ x ∧ y ≤ x ∨ y.

(3) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi) and (
∨

i∈Γ xi)→ y =∧
i∈Γ(xi → y).

(4) x→ (
∨

i∈Γ yi) ≥
∨

i∈Γ(x→ yi).

(5) (
∧

i∈Γ xi)→ y ≥
∨

i∈Γ(xi → y).

(6) (x� y)→ z = x→ (y → z) = y → (x→ z).

(7) x � (x → y) ≤ y, x → y ≤ (y → z) → (x → z), and
x→ y ≤ (z → x)→ (z → y).

(8) y ≤ x→ (x� y) and x ≤ (x→ y)→ y.

(9) x→ y ≤ (x� z)→ (y � z).

(10) (x→ y)� (y → z) ≤ x→ z.

(11) x→ y = 1 iff x ≤ y.

(12) x→ y = y∗ → x∗.

(13) (x� y)∗ = x→ y∗ = y → x∗ and x→ y = (x� y∗)∗.

(14)
∧

i∈Γ x∗i = (
∨

i∈Γ xi)
∗ and

∨
i∈Γ x∗i = (

∧
i∈Γ xi)

∗.

Definition 1.4. [4, 7] Let X denote a set. A function eX :

X ×X → L is called:

(E1) reflexive if eX(x, x) = 1 for all x ∈ X ,

(E2) transitive if eX(x, y) � eX(y, z) ≤ eX(x, z), for all
x, y, z ∈ X , and

(E3) if eX(x, y) = eX(y, x) = 1, then x = y.

If e satisfies (E1) and (E2), (X, eX) is a fuzzy preorder set. If e
satisfies (E1), (E2), and (E3), (X, eX) is a fuzzy partially order
set (for simplicity, fuzzy poset).

Example 1.5. (1) We define a function

eLX : LX × LX → L

as
eLX (A,B) =

∧
x∈X

(A(x)→ B(x)).

Then, (LX , eLX ) is a fuzzy poset from Lemma 1.3 (10,
11).

(2) If (X, eX) is a fuzzy poset and we define a function
e−1
X (x, y) = eX(y, x), then (X, e−1

X ) is a fuzzy poset.

2. Fuzzy Connections and Relations in Complete
Residuated Lattices

Definition 2.1. Let (X, eX) and (Y, eY ) denote fuzzy posets
and f : X → Y and g : Y → X denote maps.

(1) (eX , f, g, eY ) is called a Galois connection if for all x ∈
X, y ∈ Y ,

eY (y, f(x)) = eX(x, g(y)).

(2) (eX , f, g, eY ) is called a dual Galois connection if for all
x ∈ X, y ∈ Y ,

eY (f(x), y) = eX(g(y), x).

(3) (eX , f, g, eY ) is called a residuated connection if for all
x ∈ X, y ∈ Y ,

eY (f(x), y) = eX(x, g(y)).

(4) (eX , f, g, eY ) is called a dual residuated connection if
for all x ∈ X, y ∈ Y ,

eY (y, f(x)) = eX(g(y), x).

(5) f is an isotone map if eY (f(x1), f(x2)) ≥ eX(x1, x2)

for all x1, x2 ∈ X .

(6) f is an antitone map if eY (f(x1), f(x2)) ≥ eX(x2, x1)

for all x1, x2 ∈ X .

(7) f is an embedding map if eY (f(x1), f(x2)) = eX(x1, x2)

for all x1, x2 ∈ X .

If X = Y and eX = eY , we simply denote (eX , f, g) for
(eX , f, g, eY ). (X, (eX , f, g)) is called a Galois (resp. residu-
ated, dual Galois, and dual residuated) pair.

Remark 2.2. Let (X, eX) and (Y, eY ) denote a fuzzy poset
and f : X → Y and g : Y → X denote maps.

(1) (eX , f, g, eY ) is a Galois (resp. dual Galois) connection
iff (eY , g, f, eX) is a Galois (resp. dual Galois) connec-
tion.
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(2) (eX , f, g, eY ) is a Galois (resp. residuated) connection
iff (e−1

X , f, g, e−1
Y ) is a dual (resp. dual residuated) Galois

connection.

(3) (eX , f, g, eY ) is a residuated (resp. dual residuated) con-
nection iff (e−1

Y , g, f, e−1
X ) is a residuated (resp. dual

residuated) connection.

(4) (eX , f, g, eY ) is a Galois (resp. dual Galois) connection
iff (eX , f, g, e−1

Y ) is a residuated (resp. dual residuated)
connection.

(5) (eX , f, g, eY ) is a residuated connection iff (eY , g, f, eX)

is a dual residuated connection.

Theorem 2.3. Let (X, eX) and (Y, eY ) denote a fuzzy poset
and f : X → Y and g : Y → X denote maps.

(1) (eX , f, g, eY ) is a Galois connection if f, g are antitone
maps and eY (y, f(g(y))) = eX(x, g(f(x))) = 1.

(2) (eX , f, g, eY ) is a dual Galois connection if f, g are anti-
tone maps and eY (f(g(y)), y) = eX(g(f(x)), x) = 1.

(3) (eX , f, g, eY ) is a residuated connection if f, g are iso-
tone maps and eY (f(g(y)), y) = eX(x, g(f(x))) = 1.

(4) (eX , f, g, eY ) is a dual residuated connection if f, g are
isotone maps and eY (y, f(g(y))) = eX(g(f(x)), x) =

1.

Proof. (1) Let (f, g) denote a Galois connection. Since

eY (y, f(x)) = eX(x, g(y)),

we have

1 = eY (f(x), f(x)) = eX(x, g(f(x)))

and
eY (y, f(g(y))) = eX(g(y), g(y)) = 1.

Furthermore,

eY (f(x1), f(x2)) = eX(x2, g(f(x1)))

≥ eX(x2, x1)� eX(x1, g(f(x1)))

= eX(x2, x1).

eX(g(y1), g(y2)) = eY (y2, f(g(y1)))

≥ eY (y2, y1)� eY (y1, f(g(y1)))

= eY (y2, y1).

Conversely,

eY (y, f(x)) ≥ eY (y, f(g(y))� eY (f(g(y)), f(x))

= eY (f(g(y)), f(x))

≥ eX(x, g(y)).

Similarly, eY (y, f(x)) ≤ eX(x, g(y)).

(2) Since eY (f(x), y) = eX(g(y), x), we have

1 = eY (f(x), f(x)) = eX(g(f(x)), x)

and
eY (f(g(y)), y) = eX(g(y), g(y)) = 1.

Furthermore,

eY (f(x1), f(x2)) = eX(g(f(x2)), x1)

≥ eX(x2, x1)� eX(g(f(x2)), x2)

= eX(x2, x1).

eX(g(y1), g(y2)) = eX(f(g(y2)), y1)

≥ eY (y2, y1)� eY (f(g(y2)), y2)

= eY (y2, y1).

Conversely,

eY (f(x), y) ≥ eY (f(x), f(g(y))� eY (f(g(y)), y)

= eY (f(x), f(g(y)))

≥ eX(g(y), x).

Similarly, eY (f(x), y) ≤ eX(g(y), x).

(3) Since eY (f(x), y) = eX(x, g(y)), we have

1 = eY (f(x), f(x)) = eX(x, g(f(x)))

and
eY (f(g(y)), y) = eX(g(y), g(y)) = 1.

Furthermore,

eY (f(x1), f(x2)) = eX(x1, g(f(x2)))

≥ eX(x1, x2)� eX(x2, g(f(x2)))

= eX(x1, x2).

eX(g(y1), g(y2)) = eX(f(g(y1)), y2)

≥ eY (y1, y2)� eY (f(g(y1)), y1)

= eY (y1, y2).
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Conversely,

eY (f(x), y) ≥ eY (f(x), f(g(y))� eY (f(g(y)), y)

= eY (f(x), f(g(y)))

≥ eX(x, g(y)).

Moreover,

eX(x, g(y)) ≥ eX(x, g(f(x)))� eX(g(f(x)), g(y))

= eX(g(f(x)), g(y))

≥ eY (f(x), y).

(4) It is similarly proved as (3).

Example 2.4. Let X = {a, b, c} denote a set and f : X → X

denote a function as f(a) = b, f(b) = a, f(c) = c. Define a
binary operation � (called Łukasiewicz conjunction) on L =

[0, 1] using
x� y = max{0, x+ y − 1},

x→ y = min{1− x+ y, 1}.

(1) Let (X = {a, b, c}, e1) denote a fuzzy poset as follows:

e1 =


a b c

a 1.0 0.6 0.5

b 0.6 1.0 0.5

c 0.7 0.7 1.0


Since e1(x, y) = e1(f(x), f(y)),

e1(x, f(f(x))) = e1(f(f(x)), x) = 1,

then, (e1, f, f) are both residuated and dual residuated
connections. Since 0.7 = e1(c, a) 6≤ e1(f(a), f(c)) =

e1(b, c) = 0.5, f is not an antitone map. Hence, (e1, f, f)

are neither Galois nor dual Galois connections.

(2) Let (X = {a, b, c}, e2) denote a fuzzy poset as follows:

e2 =


a b c

a 1.0 0.6 0.5

b 0.6 1.0 0.7

c 0.7 0.5 1.0


Since e2(x, y) = e2(f(y), f(x)),

e2(x, f(f(x))) = e2(f(f(x)), x) = 1,

then, (e2, f, f) are both Galois and dual Galois con-

nections. Since 0.7 = e2(c, a) 6≤ e2(f(c), f(a)) =

e2(c, b) = 0.5, f is not an isotone map. Hence, (e2, f, f)

are neither residuated nor dual residuated connections.

Definition 2.5. Let R ∈ LX×Y denote a fuzzy relation. For
each A ∈ LX and B ∈ LY , we define operations R−1(y, x) =

R(x, y) and F ,GR,HR, IR,JR,KR : LY → LX as follows:

FR(B)(x) =
∧
y∈Y

(R(x, y)→ B(y)),

GR(B)(x) =
∧
y∈Y

(B(y)→ R(x, y)),

HR(B)(x) =
∨
y∈V

(R(x, y)�B(y)),

IR(B)(x) =
∨
y∈V

(R∗(x, y)�B∗(y)),

JR(B)(x) =
∧
y∈Y

(R(x, y)→ B∗(y)),

KR(B)(x) =
∨
y∈V

(R(x, y)�B∗(y)).

Theorem 2.6. Let R ∈ LX×Y denote a fuzzy relation. For
each A ∈ LX and B ∈ LY ,

(1) HR(B) = (FR(B
∗))∗, IR(B) = (G(B∗))∗.

2) GR(B) = FR∗(B∗), (IR(B))∗ = FR∗(B) = GR(B∗).

(3) HR−1(FR(B)) ≤ B and A ≤ FR(HR−1(A)).

(4) B ≤ FR−1(HR(B)) andHR(FR−1(A)) ≤ A.

(5) A ≤ GR(GR−1(A)) and B ≤ GR−1(GR(B)).

(6) A ≤ JR(JR−1(A)) and B ≤ JR−1(JR(B)).

(7) IR(IR−1(A)) ≤ A and IR−1(IR(B)) ≤ B.

(8) KR(KR−1(A)) ≤ A and KR−1(KR(B)) ≤ B.

(9) F ,HR : (LY , eLY )→ (LX , eLX ) are isotone maps.

(10) GR, IR,JR,KR : (LY , eLY )→ (LX , eLX ) are antitone
maps.

Proof. (1) From Lemma 1.3 (13,14), we have

(FR(B
∗))∗(x)

=
(∧

y∈X(R(x, y)→ B∗(y))
)∗

=
(∧

y∈X(R(x, y)�B(y))∗
)∗

=
∨

y∈X(R(x, y)�B(y)) = HR(B)(x).
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(GR(B∗))∗(x)
=
(∧

y∈X(B∗(y)→ R(x, y))
)∗

=
(∧

y∈X(R∗(x, y)�B∗(y))∗
)∗

=
∨

y∈X(R∗(x, y)�B∗(y)) = IR(B)(x).

(2)

FR∗(B∗)(x)

=
∧

y∈X(R∗(x, y)→ B∗(y)) (by Lemma 1.3 (12))
=
∧

y∈X(B(y)→ R(x, y)) = GR(B)(x).

(IR(B))∗(x)

=
(∨

y∈X(R∗(x, y)�B∗(y)
)∗

=
∧

y∈X(R∗(x, y)→ B(y)) = FR∗(B)(x)

=
∧

y∈X(B∗(y)→ R(x, y)) = GR(B∗)(x).

(3) From Lemma 1.3 (7), we have

HR−1(FR(B))(x)

=
∨

y∈X(R−1(x, y)�FR(B)(y))

=
∨

y∈X(R(y, x)�
∧

z∈X(R(y, z)→ B(z))

≤
∨

y∈X(R(y, x)� (R(y, x)→ B(x)) ≤ B(x).

From Lemma 1.3 (8), we have

FR(HR−1(A))(x)

=
∧

y∈X(R(x, y)→ HR−1(A)(y))

=
∧

y∈X(R(x, y)→
∨

z∈X(R−1(y, z)→ A(z))

≥
∧

y∈X(R(x, y)→ (R(x, y)�A(x)) ≥ A(x)

(4) From Lemma 1.3 (8), we have

GR(GR−1(A))(x)

=
∧

y∈X(GR−1(A)(y)→ R(x, y))

=
∧

y∈X(
∧

z∈X(A(z)→ R−1(y, z))→ R(x, y))

≥
∧

y∈X((A(x)→ R(x, y))→ R(x, y))

≥ A(x).

(6)

JR(JR−1(A))(x)

=
∧

y∈Y (R(x, y)→ (JR−1(A))∗(y))

=
∧

y∈Y (R(x, y)→
∨

z∈X(R∗−1(y, z)�A(z)))

≥
∧

y∈Y (R(x, y)→ (R(x, y)�A(x)))

≥ A(x).

(7)

IR(IR−1(A))(x)

=
∨

y∈Y (R
∗(x, y)� (IR−1(A))∗(y))

=
∨

y∈Y (R
∗(x, y)�

∧
z∈X(R∗−1(y, z)→ A(z)))

≤
∧

y∈Y (R
∗(x, y)� (R∗−1(y, x)→ A(x)))

≤ A(x).

(9) eLY (A,B) ≤ eLX (FR(A),FR(B)) from:

FR(A)(x)→ FR(B)(x)

=
∧

y∈Y (R(x, y)→ A(y))→
∧

y∈Y (R(x, y)→ B(y))

≥
∧

y∈Y ((R(x, y)→ A(y))→ (R(x, y)→ B(y)))

≥
∧

y∈Y (A(y)→ B(y)). (by Lemma 1.3 (7))

eLY (A,B) ≤ eLX (HR(A),HR(B)) from:

HR(A)(x)→ HR(B)(x)

=
∨

y∈Y (R(x, y)�A(y))→
∨

y∈Y (R(x, y)�B(y))

≥
∧

y∈Y ((R(x, y)�A(y))→ (R(x, y)�B(y)))

≥
∧

y∈Y (A(y)→ B(y)). (by Lemma 1.3 (9))

(10) eLY (A,B) ≤ eLX (GR(B),GR(A)) from:

GR(B)(x)→ GR(A)(x)

=
∧

y∈Y (B(y)→ R(x, y))→
∧

y∈Y (A(y)→ R(x, y))

≥
∧

y∈Y ((B(y)→ R(x, y))→ (A(y)→ R(x, y)))

≥
∧

y∈Y (A(y)→ B(y)). (by Lemma 1.3 (7))

eLY (A,B) ≤ eLX (IR(B), IR(A)) from:

IR(B)(x)→ IR(A)(x)

=
∨

y∈Y (R
∗(x, y)�B∗(y))→

∨
y∈Y (R

∗(x, y)�A∗(y))

≥
∧

y∈Y ((R
∗(x, y)�B∗(y))→ (R∗(x, y)�A∗(y)))

≥
∧

y∈Y (B
∗(y)→ A∗(y)) (by Lemma 1.3 (9))

≥
∧

y∈Y (A(y)→ B(y)). (by Lemma 1.3 (12))

Similarly, eLY (A,B) ≤ eLX (KR(B),KR(A)).
eLY (A,B) ≤ eLX (JR(B),JR(A)) from:

JR(B)(x)→ JR(A)(x)

=
∧

y∈Y (R(x, y)→ B∗(y))→
∧

y∈Y (R(x, y)→ A∗(y))

≥
∧

y∈Y ((R(x, y)→ B∗(y))→ (R(x, y)→ A∗(y)))

≥
∧

y∈Y (B
∗(y)→ A∗(y)) (by Lemma 1.3 (9))

≥
∧

y∈Y (A(y)→ B(y)). (by Lemma 1.3 (7))

Other cases are similarly proved.

Theorem 2.7. Let R ∈ LX×Y denote a fuzzy relation, (LX ,
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eLX ) and (LY , eLY ) denote fuzzy posets. We have the follow-
ing properties.

(1) (eLY ,HR,FR−1 , eLX ) and (eLX ,HR−1 ,FR, eLY ) are
residuated connections.

(2) (eLY ,FR,HR−1 , eLX ) and (eLX ,FR−1 ,HR, eLY ) are
dual residuated connections.

(3) (eLY ,GR,GR−1 , eLX ) and (eLY ,JR,JR−1 , eLX ) are Ga-
lois connections.

(4) (eLY , IR, IR−1 , eLX ) and (eLY ,KR,KR−1 , eLX ) are dual
Galois connections.

Proof. (1) For each C ∈ LX , B ∈ LY ,

eLX (HR(B), C)

=
∧

x∈X(HR(B)(x)→ C(x))

=
∧

x∈X

(∨
y∈Y (R(x, y)�B(y))→ C(x)

)
=
∧

x∈X
∧

y∈V

(
B(y)→ (R(x, y)→ C(x))

)
=
∧

y∈Y

(
B(y)→

∧
x∈X(R−1(y, x)→ C(x))

)
=
∧

y∈Y

(
B(y)→ FR−1(C)(y)

)
= eLY (B,FR−1(C)).

(2) For each C ∈ LX , B ∈ LY ,

eLX (C,FR(B))

=
∧

x∈X(C(x)→ FR(B)(x))

=
∧

x∈X

(
C(x)→

∧
y∈Y (R(x, y)→ B(y))

)
=
∧

y∈Y
∧

x∈X

(
(C(x)�R(x, y))→ B(y)

)
=
∧

y∈Y

(∨
x∈X(C(x)�R(x, y))→ B(y)

)
=
∧

y∈Y

(
HR−1(C)(y)→ B(y)

)
= eLY (HR−1(C), B).

(3) For each C ∈ LX , B ∈ LY ,

eLX (C,JR(B))

=
∧

x∈X(C(x)→ JR(B)(x))

=
∧

x∈X

(
C(x)→

∧
y∈Y (R(x, y)→ B∗(y))

)
=
∧

x∈X

(
C(x)→

∧
y∈Y (R(x, y)�B(y)→ 0)

)
=
∧

y∈Y
∧

x∈X

(
(C(x)�R(x, y)�B(y))→ 0

)
=
∧

y∈Y

(
B(y)→

∧
x∈X((R(x, y)� C(x))→ 0)

)
=
∧

y∈Y

(
B(y)→

∧
x∈X(R−1(y, x)→ C∗(x)

)
=
∧

y∈Y

(
B(y)→ JR−1(C)(y)

)
= eLY (B,JR−1(C)).

(4) For each C ∈ LX , B ∈ LY ,

eLX (KR(B), C)

=
∧

x∈X(KR(B)(x)→ C(x))

=
∧

x∈X

(∨
y∈Y R(x, y)�B∗(y)→ C(x)

)
=
∧

x∈X
∧

y∈Y

(
R(x, y)�B∗(y)� C∗(x)→ 0

)
=
∧

x∈X
∧

y∈Y

(
R(x, y)� C∗(x)→ B(y)

)
=
∧

y∈Y

(∨
x∈X(R−1(y, x)� C∗(x))→ B(y)

)
=
∧

y∈Y

(
KR−1(C)(y)→ B(y)

)
= eLY (KR−1(C), B).

For each C ∈ LX , B ∈ LY ,

eLY (IR(B), C)

=
∧

x∈X(IR(B)(x)→ C(x))

=
∧

x∈X

(∨
y∈Y (R

∗(x, y)�B∗(y)→ C(x)
)

=
∧

x∈X
∧

y∈Y

(
R∗(x, y)�B∗(y)→ C(x)

)
=
∧

x∈X
∧

y∈Y

(
R∗(x, y)� C∗(x)→ B(y)

)
=
∧

y∈Y

(∨
x∈X((R−1)∗(y, x)� C∗(x))→ B(y)

)
=
∧

y∈Y

(
IR−1(C)(y)→ B(y)

)
= eLY (IR−1(C), B).

Other cases are similarly proved.

3. Conclusion

In this paper, we investigated the properties of fuzzy Galois
(dual Galois, residuated, and dual residuated) connections in a
complete residuated lattice L. In particular, we studied fuzzy
Galois (dual Galois, residuated, and dual residuated) connec-
tions induced by L-fuzzy relations.

In the future, we will investigate the properties using fuzzy
connections on algebraic structures and study the fuzzy concept
lattices.
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