• 제목/요약/키워드: Galois

검색결과 199건 처리시간 0.021초

THE INVERSE GALOIS PROBLEM

  • MATYSIAK, LUKASZ
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.765-767
    • /
    • 2022
  • The inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers. This problem, first posed in the early 19th century, is unsolved. In other words, we consider a pair - the group G and the field K. The question is whether there is an extension field L of K such that G is the Galois group of L. In this paper we present the proof that any group G is a Galois group of any field extension. In other words, we only consider the group G. And we present the solution to the inverse Galois problem.

Lagrange 보간법에 의한 Galois 스윗칭함수 구성 (Derivation of Galois Switching Functions by Lagrange's Interpolation Method)

  • 김흥수
    • 대한전자공학회논문지
    • /
    • 제15권5호
    • /
    • pp.29-33
    • /
    • 1978
  • 본 논문에서는 Galois 스윗칭함수를 구하기 위해서 임의의 유한체상에서 정의되는 Galois 체의 성질을 설명하였고, 임의의 유한체상에서의 연산방법을 밝혔다. 고리고 Lagrange 보간법에 의한 다항식이 유한체상에서 전개될 수 있음을 증명하였다 이 결과를 적용하여 단일변수를 갖는 Galois스윗칭 함수를 유도하고 다치논리회로를 실현하였다.

  • PDF

RELATING GALOIS POINTS TO WEAK GALOIS WEIERSTRASS POINTS THROUGH DOUBLE COVERINGS OF CURVES

  • Komeda, Jiryo;Takahashi, Takeshi
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.69-86
    • /
    • 2017
  • The point $P{\in}{\mathbb{P}}^2$ is referred to as a Galois point for a nonsingular plane algebraic curve C if the projection ${\pi}_P:C{\rightarrow}{\mathbb{P}}^1$ from P is a Galois covering. In contrast, the point $P^{\prime}{\in}C^{\prime}$ is referred to as a weak Galois Weierstrass point of a nonsingular algebraic curve C' if P' is a Weierstrass point of C' and a total ramification point of some Galois covering $f:C^{\prime}{\rightarrow}{\mathbb{P}}^1$. In this paper, we discuss the following phenomena. For a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$, if there exists a common ramification point of ${\pi}_P$ and ${\varphi}$, then there exists a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with its Weierstrass semigroup such that H(P') = or , which is a semigroup generated by two positive integers r and 2r + 1 or 2r - 1, such that P' is a branch point of ${\varphi}$. Conversely, for a weak Galois Weierstrass point $P^{\prime}{\in}C^{\prime}$ with H(P') = or , there exists a nonsingular plane curve C with a Galois point P and a double covering ${\varphi}:C{\rightarrow}C^{\prime}$ such that P' is a branch point of ${\varphi}$.

GAUSS SUMS OVER GALOIS RINGS OF CHARACTERISTIC 4

  • Oh, Yunchang;Oh, Heung-Joon
    • Korean Journal of Mathematics
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2001
  • In this paper, we define and study Gauss sums over Galois rings of characteristic 4. In particular, we give the absolute value of Gauss sum over Galois rings of characteristic 4.

  • PDF

Fuzzy Connections and Relations in Complete Residuated Lattices

  • Kim, Yong Chan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권4호
    • /
    • pp.345-351
    • /
    • 2013
  • In this paper, we investigate the properties of fuzzy Galois (dual Galois, residuated, and dual residuated) connections in a complete residuated lattice L. We give their examples. In particular, we study fuzzy Galois (dual Galois, residuated, dual residuated) connections induced by L-fuzzy relations.

REMARKS ON GAUSS SUMS OVER GALOIS RINGS

  • Kwon, Tae Ryong;Yoo, Won Sok
    • Korean Journal of Mathematics
    • /
    • 제17권1호
    • /
    • pp.43-52
    • /
    • 2009
  • The Galois ring is a finite extension of the ring of integers modulo a prime power. We consider characters on Galois rings. In analogy with finite fields, we investigate complete Gauss sums over Galois rings. In particular, we analyze [1, Proposition 3] and give some lemmas related to [1, Proposition 3].

  • PDF

THE GAUSS SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho;Jun, Sang Pyo
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.519-535
    • /
    • 2018
  • Let ${\mathcal{R}}$ denote the Galois ring of characteristic $p^n$, where p is a prime. In this paper, we investigate the elementary properties of Gauss sums over ${\mathcal{R}}$ in accordance with conditions of characters of Galois rings, and we restate results for Gauss sums in [1, 2, 3, 7, 12, 13]. Also, we compute the modulus of the Gauss sums.

LINEAR AUTOMORPHISMS OF SMOOTH HYPERSURFACES GIVING GALOIS POINTS

  • Hayashi, Taro
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.617-635
    • /
    • 2021
  • Let X be a smooth hypersurface X of degree d ≥ 4 in a projective space ℙn+1. We consider a projection of X from p ∈ ℙn+1 to a plane H ≅ ℙn. This projection induces an extension of function fields ℂ(X)/ℂ(ℙn). The point p is called a Galois point if the extension is Galois. In this paper, we will give necessary and sufficient conditions for X to have Galois points by using linear automorphisms.