• Title/Summary/Keyword: Gallium-68

Search Result 14, Processing Time 0.022 seconds

Preliminary Study on Separation of Germanium and Gallium for Development of a 68Ge/68Ga Generator

  • Lee, Heung Nae;Kim, Sang Wook;Park, Jeong Hoon;Kim, Injong;Yang, Seung Dae;Hur, Min Goo
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.101-106
    • /
    • 2011
  • The separation of germanium and gallium ion with metal oxide was introduced into the development of $^{68}Ge/^{68}Ga$ generator. Germanium and gallium within mixed solution were respectively separated by using a liquid-liquid extraction and a column chromatographic method. The separation of Ge within high concentrated hydrochloric and sulfuric acid was conducted by the extraction to $CCl_4$ and the back-extraction to 0.05 M HCl. An optimum condition of the extraction by $CCl_4$ was in 5~7 M HCl and efficiency was around 80%. The gallium was selectively separated by using $Al_2O_3$ among metal oxides as sorbents from the mixed solution in 0.04~0.10 M HCl condition.

Evaluation of PET Image for Fluorine-18 and Gallium-68 using Phantom in PET/CT (PET/CT에서 Phantom을 이용한 Fluorine-18, Gallium-68 방사성 핵종의 PET 영상 평가)

  • Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • The purpose of this study is to compare PET imaging performance with Fluorine-18 ($^{18}F$) and Gallium-68 ($^{68}Ga$) for influence of physical properties of PET tracer. Measurement were performed on a Siemens Biograph mCT64 PET/CT scanner using NEMA IEC body phantom and Flangeless Esser PET phantom containing filled with $^{18}F$ and $^{68}Ga$. Emission scan duration(ESD) was set to 1, 2, 3, 4 and 5min/bed for $^{68}Ga$ and 1min/bed for $^{18}F$. The PET image were evaluated in terms of contrast, spatial resolution. Under same condition, The percentage of contrast recovery measured in the phantom ranged from 16.88% to 72.56% for $^{68}Ga$ and from 27.51% to 74.43% for $^{18}F$ and The FWHM value to evaluate spatial resolution was 10.96 mm for $^{68}Ga$ and 9.19 mm for $^{18}F$. For this study, $^{18}F$ produces better image contrast and spatial resolution than $^{68}Ga$ due to higher positron yield and lower positron energy ($^{18}F$: 96.86%, 633.5 keV, $^{68}Ga$: 88.9%, 1899 keV), The physical properties of PET tracer effect on the PET image. $^{68}Ga$ image applying ESD of 3, 4, 5min/bed were showed similar to $^{18}F$ image with ESD of 1min/bed. This study suggests that increasing ESD for acquiring $^{68}Ga$ PET image seem to be similar to $^{18}F$ image.

Development of an Automated Synthesizer for the Routine Production of Ga-68 Radiopharmaceuticals (임상용 Ga-68 표지 방사성의약품의 합성을 위한 자동합성장치 개발)

  • Jun Young PARK;Jeongmin SON;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.253-260
    • /
    • 2023
  • The germanium-68/gallium-68 (68Ge/68Ga) generator has high spatial utilization and requires little maintenance, making it economical and easy to produce. Thus, the frequency of use of 68Ga radiopharmaceuticals is rapidly increasing worldwide. Therefore, this study attempted to develop an automated synthesizer for the routine clinical application of 68Ga radiopharmaceuticals. The automated synthesizer was based on a fixed tubing system and the structure was designed after adjusting the position of the parts to reflect the synthesis method. Using various components that can be supplied in Korea, the automated synthesizer was manufactured at a much lower price cost than that of a commercialized automated synthesizer sold by companies. 68Ga-DOTA-[Tyr3]-octreotide (68Ga-DOTATOC) was synthesized to evaluate the performance of the automated synthesizer. 68Ga-DOTATOC could be synthesized with about 65% of non-decay corrected yield, and the synthesized 68Ga-DOTATOC met all quality control standards. We have synthesized 68Ga-DOTATOC more than 100 times, and only faced a few problems caused by mechanical errors. In this study, we successfully developed a simple automated synthesizer for 68Ga radiopharmaceuticals with high reproducibility. As various 68Ga radiopharmaceuticals have recently been developed, it is expected that the automated synthesizer developed in this study will be useful for routine clinical use.

The Interaction of Gallium Bromide with Ethyl Bromide in Nitrobenzene and in 1,2,4-Trichlorobenzene (니트로벤젠溶液 및 1,2,4-트리클로로벤젠 溶液內에서의 브롬化갤륨과 브롬化에칠과의 相互作用)

  • Sang Up Choi
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.65-68
    • /
    • 1963
  • The solubility of ethyl bromide in nitrobenzene and in 1,2,4-trichlorobenzene has been measured at $19^{\circ}$ in the presence and absence of gallium bromide. When gallium bromide does not exist in the system, the solubility of ethyl bromide in nitrobenzene is greater than in 1,2,4-trichlorobenzene, indicating the stronger interaction of ethyl bromide with nitrobenzene than with 1,2,4-trichlorobenzene. When there exists gallium bromide in the system, an unstable 1: 1 complex, C2H5Br·GaBr3, of gallium bromide with ethyl bromide is formed in the solution. The 1: 1 complex in solution dissociates into the components to a large extent according to one of the following equilibria or both: $C_2H_5Br{\cdot}GaBr_3{\rightleftarrows}C_2H_5Br+GaBr_3$C_2H_5Br{\cdot}GaBr_3{\rightleftarrows}C_2H_5Br+1}2GaBr_3$$ The stability of the 1: 1 complex of ethyl bromide with gallium bromide is compared with that of the corresponding complex of methyl bromide.

  • PDF

Development of a Synthetic Method for [68Ga]Ga-FAPI-04 Using a Cassette-based Synthesizer (카세트 기반 자동합성장치를 사용한 [68Ga]Ga-FAPI-04의 합성방법 연구)

  • Jun Young PARK;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.43-51
    • /
    • 2024
  • [68Ga]Ga-FAPI-04 is a promising radiopharmaceutical that binds specifically to fibroblast activation protein, which is overexpressed in more than 90% of malignant epithelial tumors but not in normal healthy tissue. This study aimed to develop an efficient method for producing 68Ga-labelled FAPI-04 using a cassette-based automated synthesizer. [68Ga]GaCl3 was eluted from an Eckert & Ziegler Medical germanium-68/gallium-68 generator using 2.5 mL of 0.1 M HCl. The synthesis of the [68Ga]Ga-FAPI-04 was performed using different concentrations of HEPES (1~2.5 M; 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid) in 3~10 minutes; amounts of FAPI-04 precursor (5~50 ㎍) and reaction temperature (25℃~100℃) were optimized on the BIKBox® synthesizer. The labeling efficiency of [68Ga]Ga-FAPI-04 was greater than 96% (decay corrected) using 25 ㎍ FAPI-04 synthesized in 10 minutes at 100℃ in 2 M HEPES (pH 3.85), and its stability was greater than 99% at 6 hours. The total synthesis time of [68Ga]Ga-FAPI-04 was 32.4 minutes, and the product met all quality control criteria. In this study, we developed and optimized a labeling method using [68Ga]Ga-FAPI-04 using a cassette-based synthesizer. The devised method is expected to be useful for supplying [68Ga]Ga-FAPI-04 for diagnosis in clinical practice.

Chelators for 68Ga radiopharmaceuticals

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.22-36
    • /
    • 2016
  • $^{68}Ga$ is a promising radionuclide for positron emission tomography (PET). It is a generator-produced ($^{68}Ge/^{68}Ga$-generator) radionuclide with a half-life of 68 min. The employment of $^{68}Ga$ for basic research and clinical applications is growing exponentially. Bifunctional chelators (BFCs) that can be efficiently radiolabeled with $^{68}Ga$ to yield complexes with good in vivo stability are needed. Given the practical advantages of $^{68}Ga$ in PET applications, gallium complexes are gaining increasing attention in biomedical imaging. However, new $^{68}Ga$-labeled radiopharmaceuticals that can replace $^{18}F$-labeled agents like [$^{18}F$]fluorodeoxyglucose (FDG) are needed. The majority of $^{68}Ga$-labeled derivatives currently in use consist of peptide agents, but the development of other agents, such as amino acid or nitroimidazole derivatives and glycosylated human serum albumin, is being actively pursued in many laboratories. Thus, the availability of new $^{68}Ga$-labeled radiopharmaceuticals with high impact is expected in the near future. Here, we present an overview of the different new classes of chelators for application in molecular imaging using $^{68}Ga$ PET.

Fully automated radiosynthesis of [68Ga]edotreotide ([68Ga]DOTA-TOC) and its quality controls

  • Park, Hyun Sik;Lee, Hong Jin;An, Hyun Ho;Moon, Byung Seok;Lee, Byung Chul;Lee, Won Woo;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • $^{68}Ga-PET$ is of growing importance in the practice of nuclear medicine diagnostic imaging for neuroendocrine tumors as well as prostate cancers. Following this interests, we herein present the radiosynthesis process of [$^{68}Ga$]edotreotide ([$^{68}Ga$]DOTA-TOC) based on the fully automated procedure for clinical doses that can be provided the reduction of radiation exposure and high reproducibility. The quality controls of clinical doses in compliant with European Pharmacopoeia are also discussed.

Development of Freeze-Dried DOTMP Kits for Labeling with 68Ga

  • Lim, Jae Cheong;Choi, Sang Mu;Cho, Eun Ha;Lee, So Young;Dho, So Hee;Kim, Soo Yong
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • Lyophilized DOTMP kits were prepared using DOTMP, ammonium acetate, and ascorbic acid. The $^{68}Ga$-DOTMP was prepared by incubating the kit dissolved in 0.5 ml of concentrated $^{68}Ga$ using NaCl method and 0.5 ml of DDW, at $100^{\circ}C$ for 7 min. The labeling yield was evaluated by two solvent systems of TLC. 1 MBq of concentrated $^{68}Ga$ was labeled with $0.8{\mu}g$ of DOTMP by high radiolabeling yield (>98%), which was determined by two TLC methods. The composition of the prepared freeze-dried vial is $400{\mu}g$ of DOTMP, 19.27 mg of ammonium acetate and 17.62 mg of ascorbic acid. ~555 MBq of $^{68}Ga$-DOTMP was prepared with excellent radiochemical purity (>98%) and it was stable for 4 hr at room temperature. In conclusion, Freeze-dried DOTMP kits for the convenient preparation of $^{68}Ga$-DOTMP have been developed. Availability of this kit is expected to stimulate the widespread use of $^{68}Ga$-DOTMP in the fields of nuclear medicine.

Design of a Highly Integrated Palette-type High Power Amplifier Module Using GaN Devices for DPD Application (질화갈륨 소자를 이용한 DPD용 고집적 팔렛트형 고출력증폭기 모듈 설계)

  • Oh, Seong-Min;Lim, Jong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2241-2248
    • /
    • 2011
  • This paper describes the design of a palette-type 60watt high power amplifier module using gallium nitride(GaN) devices with high power and efficiency performances for WiMAX and LTE systems. The line-up for the high gain amplifier module consists of the pre-amplifier stage with low power and high gain, 8watt GaN driving amplifier stage, and 60watt GaN high power amplifier stage of Doherty structure with two 30watt GaN devices. The obtained gain is 61.4dB with an excellent gain flatness of ${\pm}$0.075dB over 2.5~2.68GHz. GaN devices and the Doherty structure are adopted for the improvement of high efficiency and output power. The measurement for the fabricated high power amplifier module of palette type is performed using the widely known WiMAX signal all over the world. In the example of RRH(remote radio head) application of the fabricated amplifier module, the measured efficiency is 37~38% with the 10watts of modulated output power. It is shown that when the fabricated amplifier module is activated with a digital predistorter(DPD), the measured ACLR is better than 46dBc under the 10watts of modulated output power.

Study of 68Ga Labelled PET/CT Scan Parameters Optimization (68Ga 표지 PET/CT 검사의 최적화된 매개변수에 대한 연구)

  • In Suk Kwak;Hyuk Lee;Si Hwal Kim;Seung Cheol Moon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.111-127
    • /
    • 2023
  • Purpose: Gallium-68 (68Ga) is increasingly used in nuclear medicine imaging for various conditions such as lymphoma and neuroendocrine tumors by labeling tracers like Prostate Specific Membrane Antigen (PSMA) and DOTA-TOC. However, compared to Fluorine-18 (18F) used in conventional nuclear medicine imaging, 68Ga has lower spatial resolution and relatively higher Signal to Background Ratio (SBR). Therefore, this study aimed to investigate the optimized parameters and reconstruction methods for PET/CT imaging using the 68Ga radiotracer through model-based image evaluation. Materials and Methods: Based on clinical images of 68Ga-PSMA PET/CT, a NEMA/IEC 2008 PET phantom model was prepared with a Hot vs Background (H/B) ratio of 10:1. Images were acquired for 9 minutes in list mode using DMIDR (GE, Milwaukee WI, USA). Subsequently, reconstructions were performed for 1 to 8 minutes using OS-EM (Ordered Subset Expectation Maximization) + TOF (Time of Flight) + Sharp IR (VPFX-S), and BSREM (Block Sequential Regularized Expectation Maximization) + TOF + Sharp IR (QCFX-S-400), followed by comparative evaluation. Based on the previous experimental results, images were reconstructed for BSREM + TOF + Sharp IR / 2 minutes (QCFX-S-2min) with varying β-strength values from 100 to 700. The image quality was evaluated using AMIDE (freeware, Ver.1.0.1) and Advanced Workstation (GE, USA). Results: Images reconstructed with QCFX-S-400 showed relatively higher values for SNR (Signal to Noise Ratio), CNR (Contrast to Noise Ratio), count, RC (Recovery Coefficient), and SUV (Standardized Uptake Value) compared to VPFX-S. SNR, CNR, and SUV exhibited the highest values at 2 minutes/bed acquisition time. RC showed the highest values for a 10 mm sphere at 2 minutes/bed acquisition time. For small spheres of 10 mm and 13 mm, an inverse relationship between β-strength increase and count was observed. SNR and CNR peaked at β-strength 400 and then decreased, while SUV and RC exhibited a normal distribution based on sphere size for β-strength values of 400 and above. Conclusion: Based on the experiments, PET/CT imaging using the 68Ga radiotracer yielded the most favorable quantitative and qualitative results with a 2 minutes/bed acquisition time and BSREM reconstruction, particularly when applying β-strength 400. The application of BSREM can enhance accurate quantification and image quality in 68Ga PET/CT imaging, and an optimization process tailored to each institution's imaging objectives appears necessary.