DOI QR코드

DOI QR Code

카세트 기반 자동합성장치를 사용한 [68Ga]Ga-FAPI-04의 합성방법 연구

Development of a Synthetic Method for [68Ga]Ga-FAPI-04 Using a Cassette-based Synthesizer

  • 박준영 (연세대학교 의과대학 세브란스병원 핵의학과) ;
  • 강원준 (연세대학교 의과대학 세브란스병원 핵의학과)
  • Jun Young PARK (Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine) ;
  • Won Jun KANG (Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine)
  • 투고 : 2024.01.31
  • 심사 : 2024.02.25
  • 발행 : 2024.03.31

초록

[68Ga]Ga-FAPI-04는 암세포에 과발현 되어 있는 fibroblast activation protein (FAP)에 특이적으로 결합하는 FAP 저해제(FAP inhibitor, FAPI)에 방사성동위원소 68Ga을 표지한 방사성의약품이다. 본 연구에서는 국내에서 제작된 카세트기반 자동합성장치를 사용하여 [68Ga]Ga-FAPI-04를 제조하는 방법을 개발하였다. [68Ga]Ga-FAPI-04의 합법을 개발하기 위해 완충액 HEPES의 농도, 반응시간, FAPI-04 전구체 양, 반응온도에 따른 표지효율을 확인하였다. [68Ga]Ga-FAPI-04는 2 M HEPES를 사용하여 pH 3.85에서 반응할 경우 가장 높은 표지효율을 획득할 수 있었고, 반응시간이 10분일 경우와 25 ㎍의 FAPI-04 전구체를 사용할 경우 및 100℃에서 반응할 경우 가장 높은 표지효율을 획득할 수 있었다. 또한 최종 합성된 [68Ga]Ga-FAPI-04는 모든 품질기준을 만족하여 본 연구를 통해 개발된 [68Ga]Ga-FAPI-04의 합성법은 FAPI 기반 방사성의 약품생산에 활용도가 높을 것으로 예상된다.

[68Ga]Ga-FAPI-04 is a promising radiopharmaceutical that binds specifically to fibroblast activation protein, which is overexpressed in more than 90% of malignant epithelial tumors but not in normal healthy tissue. This study aimed to develop an efficient method for producing 68Ga-labelled FAPI-04 using a cassette-based automated synthesizer. [68Ga]GaCl3 was eluted from an Eckert & Ziegler Medical germanium-68/gallium-68 generator using 2.5 mL of 0.1 M HCl. The synthesis of the [68Ga]Ga-FAPI-04 was performed using different concentrations of HEPES (1~2.5 M; 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid) in 3~10 minutes; amounts of FAPI-04 precursor (5~50 ㎍) and reaction temperature (25℃~100℃) were optimized on the BIKBox® synthesizer. The labeling efficiency of [68Ga]Ga-FAPI-04 was greater than 96% (decay corrected) using 25 ㎍ FAPI-04 synthesized in 10 minutes at 100℃ in 2 M HEPES (pH 3.85), and its stability was greater than 99% at 6 hours. The total synthesis time of [68Ga]Ga-FAPI-04 was 32.4 minutes, and the product met all quality control criteria. In this study, we developed and optimized a labeling method using [68Ga]Ga-FAPI-04 using a cassette-based synthesizer. The devised method is expected to be useful for supplying [68Ga]Ga-FAPI-04 for diagnosis in clinical practice.

키워드

참고문헌

  1. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921-R925. https://doi.org/10.1016/j.cub.2020.06.081
  2. de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374-403. https://doi.org/10.1016/j.ccell.2023.02.016
  3. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174-186. https://doi.org/10.1038/s41568-019-0238-1
  4. Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal. 2023;21:96. https://doi.org/10.1186/s12964-023-01125-0
  5. Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16:35-52. https://doi.org/10.1038/nrd.2016.193
  6. Lan L, Liu H, Wang Y, Deng J, Peng D, Feng Y, et al. The potential utility of [68Ga]Ga-DOTA-FAPI-04 as a novel broad-spectrum oncological and non-oncological imaging agent-comparison with [18F]FDG. Eur J Nucl Med Mol Imaging. 2022;49:963-979. https://doi.org/10.1007/s00259-021-05522-w
  7. Milner JM, Kevorkian L, Young DA, Jones D, Wait R, Donell ST, et al. Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res Ther. 2006;8:R23. https://doi.org/10.1186/ar1877
  8. Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M, et al. The prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal. 2023;21:139. https://doi.org/10.1186/s12964-023-01151-y
  9. Zi F, He J, He D, Li Y, Yang L, Cai Z. Fibroblast activation protein α in tumor microenvironment: recent progression and implications (review). Mol Med Rep. 2015;11:3203-3211. https://doi.org/10.3892/mmr.2015.3197
  10. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415-1422. https://doi.org/10.2967/jnumed.118.210443
  11. Altmann A, Haberkorn U, Siveke J. The latest developments in imaging of fibroblast activation protein. J Nucl Med. 2021;62:160-167. https://doi.org/10.2967/jnumed.120.244806
  12. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol. 1994;12:1193-1203. https://doi.org/10.1200/JCO.1994.12.6.1193
  13. Garousi J, Orlova A, Frejd FY, Tolmachev V. Imaging using radio-labelled targeted proteins: radioimmunodetection and beyond. EJNMMI Radiopharm Chem. 2020;5:16. https://doi.org/10.1186/s41181-020-00094-w
  14. Jansen K, Heirbaut L, Cheng JD, Joossens J, Ryabtsova O, Cos P, et al. Selective inhibitors of fibroblast activation protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med Chem Lett. 2013;4:491-496. https://doi.org/10.1021/ml300410d
  15. Glatting FM, Hoppner J, Kauczor HU, Huber PE, Kratochwil C, Giesel FL, et al. Subclass analysis of malignant, inflammatory and degenerative pathologies based on multiple timepoint FAPI-PET acquisitions using FAPI-02, FAPI-46 and FAPI-74. Cancers. 2022;14:5301. https://doi.org/10.3390/cancers14215301
  16. Mori Y, Dendl K, Cardinale J, Kratochwil C, Giesel FL, Haberkorn U. FAPI PET: fibroblast activation protein inhibitor use in oncologic and nononcologic disease. Radiology. 2023;306:e220749. https://doi.org/10.1148/radiol.220749
  17. Park JY, Son J, Kang WJ. Development of an automated synthesizer for the routine production of Ga-68 radiopharmaceuticals. Korean J Clin Lab Sci. 2023;55:253-260. https://doi.org/10.15324/kjcls.2023.55.4.253
  18. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801-805. https://doi.org/10.2967/jnumed.119.227967
  19. Plhak E, Pichler C, Dittmann-Schnabel B, Gossnitzer E, Aigner RM, Stanzel S, et al. Automated synthesis of [68Ga]Ga-FAPI-46 on a Scintomics GRP synthesizer. Pharmaceuticals. 2023;16:1138. https://doi.org/10.3390/ph16081138
  20. Huang R, Pu Y, Huang S, Yang C, Yang F, Pu Y, et al. FAPI-PET/CT in cancer imaging: a potential novel molecule of the century. Front Oncol. 2022;12:854658. https://doi.org/10.3389/fonc.2022.854658
  21. Kostakoglu L, Agress H Jr, Goldsmith SJ. Clinical role of FDG PET in evaluation of cancer patients. Radiographics. 2003;23:315-340; quiz 533. https://doi.org/10.1148/rg.232025705
  22. Elboga U, Sahin E, Kus T, Cayirli YB, Aktas G, Okuyan M, et al. Comparison of 68Ga-FAPI PET/CT and 18FDG PET/CT modalities in gastrointestinal system malignancies with peritoneal involvement. Mol Imaging Biol. 2022;24:789-797. https://doi.org/10.1007/s11307-022-01729-x
  23. Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 2020;47:1820-1832. https://doi.org/10.1007/s00259-020-04769-z
  24. Huang R, Pu Y, Huang S, Yang C, Yang F, Pu Y, et al. FAPI-PET/CT in cancer imaging: a potential novel molecule of the century. Front Oncol. 2022;12:854658. https://doi.org/10.3389/fonc.2022.854658
  25. Naka S, Watabe T, Lindner T, Cardinale J, Kurimoto K, Moore M, et al. One-pot and one-step automated radio-synthesis of [18F]AlF-FAPI-74 using a multi purpose synthesizer: a proof-of-concept experiment. EJNMMI Radiopharm Chem. 2021;6:28. https://doi.org/10.1186/s41181-021-00142-z
  26. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48:1741-1748. https://doi.org/10.2967/jnumed.107.040378
  27. Alfteimi A, Lutzen U, Helm A, Juptner M, Marx M, Zhao Y, et al. Automated synthesis of [68Ga]Ga-FAPI-46 without pre-purification of the generator eluate on three common synthesis modules and two generator types. EJNMMI Radiopharm Chem. 2022;7:20. https://doi.org/10.1186/s41181-022-00172-1
  28. Spreckelmeyer S, Balzer M, Poetzsch S, Brenner W. Fully-automated production of [68Ga]Ga-FAPI-46 for clinical application. EJNMMI Radiopharm Chem. 2020;5:31. https://doi.org/10.1186/s41181-020-00112-x
  29. Bauwens M, Chekol R, Vanbilloen H, Bormans G, Verbruggen A. Optimal buffer choice of the radiosynthesis of (68)Ga-Dotatoc for clinical application. Nucl Med Commun. 2010;31:753-758. https://doi.org/10.1097/MNM.0b013e32833acb99
  30. Mueller D, Breeman WA, Klette I, Gottschaldt M, Odparlik A, Baehre M, et al. Radiolabeling of DOTA-like conjugated peptides with generator-produced (68)Ga and using NaCl-based cationic elution method. Nat Protoc. 2016;11:1057-1066. https://doi.org/10.1038/nprot.2016.060