DOI QR코드

DOI QR Code

Chelators for 68Ga radiopharmaceuticals

  • Seelam, Sudhakara Reddy (Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Lee, Yun-Sang (Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Jeong, Jae Min (Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine)
  • Received : 2016.03.28
  • Accepted : 2016.06.01
  • Published : 2016.06.30

Abstract

$^{68}Ga$ is a promising radionuclide for positron emission tomography (PET). It is a generator-produced ($^{68}Ge/^{68}Ga$-generator) radionuclide with a half-life of 68 min. The employment of $^{68}Ga$ for basic research and clinical applications is growing exponentially. Bifunctional chelators (BFCs) that can be efficiently radiolabeled with $^{68}Ga$ to yield complexes with good in vivo stability are needed. Given the practical advantages of $^{68}Ga$ in PET applications, gallium complexes are gaining increasing attention in biomedical imaging. However, new $^{68}Ga$-labeled radiopharmaceuticals that can replace $^{18}F$-labeled agents like [$^{18}F$]fluorodeoxyglucose (FDG) are needed. The majority of $^{68}Ga$-labeled derivatives currently in use consist of peptide agents, but the development of other agents, such as amino acid or nitroimidazole derivatives and glycosylated human serum albumin, is being actively pursued in many laboratories. Thus, the availability of new $^{68}Ga$-labeled radiopharmaceuticals with high impact is expected in the near future. Here, we present an overview of the different new classes of chelators for application in molecular imaging using $^{68}Ga$ PET.

Keywords

References

  1. Lucignani G. PET imaging with hypoxia tracers: a must in radiation therapy. Eur J Nucl Med Mol Imaging 2008;35:838-842. https://doi.org/10.1007/s00259-008-0740-2
  2. Lehtio K, Eskola O, Viljanen T, Oikonen V, Gronroos T, Sillanmaki L, Grenman R, Minn H. Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004;59:971-982. https://doi.org/10.1016/j.ijrobp.2003.12.014
  3. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O'shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;11:2785-2808. https://doi.org/10.1158/1078-0432.CCR-04-2626
  4. Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 2010;11:92-102. https://doi.org/10.1016/S1470-2045(09)70190-1
  5. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nature Rev Cancer 2002;2:683-693. https://doi.org/10.1038/nrc882
  6. de Rosales RTM, Arstad E, Blower PJ. Nuclear imaging of molecular processes in cancer. Targeted Oncol 2009;4(3):183-97. https://doi.org/10.1007/s11523-009-0120-2
  7. Rajendran JG, Schwartz DL, O'Sullivan J, Peterson LM, Ng P, Scharnhorst J, Grierson JR, Krohn KA. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 2006;12:5435-5441. https://doi.org/10.1158/1078-0432.CCR-05-1773
  8. Velikyan I, Maecke H, Langstrom B. Convenient preparation of $^{68}Ga$-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem 2008;19:569-573. https://doi.org/10.1021/bc700341x
  9. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, Lee DS, Chung JK, Lee MC. Preparation of a promising angiogenesis PET imaging agent: $^{68}Ga$-labeled c(RGDyK)-isothiocyanatobenzyl-1, 4, 7-triazacyclononane-1, 4, 7-triacetic acid and feasibility studies in mice. J Nucl Med 2008;49:830-836. https://doi.org/10.2967/jnumed.107.047423
  10. Shetty D, Lee YS, Jeong JM. $^{68}Ga$-labeled radiopharmaceuticals for positron emission tomography. Nucl Med Mol Imaging 2010; 44:233-240. https://doi.org/10.1007/s13139-010-0056-6
  11. Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC, Chung YK. Synthesis and characterization of nitroimidazole derivatives for $^{68}Ga$-labeling and testing in tumor xenografted mice. J Med Chem 2010;53:6378-6385. https://doi.org/10.1021/jm100545a
  12. Shetty D, Jeong JM, Ju CH, Kim YJ, Lee JY, Lee YS, Lee DS, Chung JK, Lee MC. Synthesis and evaluation of macrocyclic amino acid derivatives for tumor imaging by gallium-68 positron emission tomography. Bioorg Med Chem 2010;18:7338-7347. https://doi.org/10.1016/j.bmc.2010.09.022
  13. Shetty D, Choi SY, Jeong JM, Hoigebazar L, Lee YS, Lee DS, et al. Formation and Characterization of Gallium (III) Complexes with Monoamide Derivatives of 1, 4, 7‐Triazacyclononane‐1, 4, 7 ‐triacetic Acid: A Study of the Dependency of Structure on Reaction pH. Eur J Inorg Chem 2010;(34):5432-5438.
  14. Waldron BP, Parker D, Burchardt C, Yufit DS, Zimny M, Roesch F. Structure and stability of hexadentate complexes of ligands based on AAZTA for efficient PET labelling with gallium-68. Chem Commun 2013;49:579-581. https://doi.org/10.1039/C2CC37544C
  15. Yang BY, Jeong JM, Kim YJ, Choi JY, Lee YS, Lee DS, Chung JK, Lee MC. Formulation of $^{68}Ga$ BAPEN kit for myocardial positron emission tomography imaging and biodistribution study. Nucl Med Biol 2010;37:149-155. https://doi.org/10.1016/j.nucmedbio.2009.10.010
  16. Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schafer M, Schilling T, Haufe S, Herrmann T, Haberkorn U. Comparison of $^{68}Ga$-DOTATOC PET and $^{111}In$-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007;34:1617-1626. https://doi.org/10.1007/s00259-007-0450-1
  17. Gabriel M1, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, Kovacs P, Von Guggenberg E, Bale R, Virgolini IJ. $^{68}Ga$-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48:508-518. https://doi.org/10.2967/jnumed.106.035667
  18. Gabriel M, Oberauer A, Dobrozemsky G, Decristoforo C, Putzer D, Kendler D, Uprimny C, Kovacs P, Bale R, Virgolini IJ. $^{68}Ga$- DOTA-Tyr3-octreotide PET for assessing response to somatostatin- receptor-mediated radionuclide therapy. J Nucl Med 2009;50: 1427-1434. https://doi.org/10.2967/jnumed.108.053421
  19. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [$^{68}Ga$]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [$^{111}In$]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 2003;5:42-48. https://doi.org/10.1016/S1536-1632(03)00038-6
  20. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, Nanni C, Rizzello A, Franchi R, Fanti S. Comparison between $^{68}Ga$-DOTA-NOC and $^{18}F$-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 2008;35:1431-1438. https://doi.org/10.1007/s00259-008-0769-2
  21. Parker D. Tumour targeting with radiolabelled macrocycle-antibody conjugates. Chem Soc Rev 1990;19:271-291. https://doi.org/10.1039/CS9901900271
  22. Velikyan I. Positron emitting [$^{68}Ga$]Ga-based imaging agents: chemistry and diversity. Med Chem (Shariqah (United Arab Emirates)). 2011;7:345-379. https://doi.org/10.2174/157340611796799195
  23. Chong HS, Ma X, Le T, Kwamena B, Milenic DE, Brady ED, Song HA, Brechbiel MW. Rational design and generation of a bimodal bifunctional ligand for antibody-targeted radiation cancer therapy. J Med Chem 2008;51:118-125. https://doi.org/10.1021/jm070401q
  24. Choi J, Jeong JM, Yoo BC, Hong MK, Kim YJ, Lee YS, Lee DS, Chung JK. Ga-68-labeled neolactosylated human serum albumin (LSA) for PET imaging of hepatic asialoglycoprotein receptor. Nucl Med Biol 2015;42:53-58. https://doi.org/10.1016/j.nucmedbio.2014.08.009
  25. Choi JY, Jeong JM, Yoo BC, Kim K, Kim Y, Yang BY, Lee YS, Lee DS, Chung JK, Lee MC. Development of $^{68}Ga$-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography. Nucl Med Biol 2011;38: 371-379. https://doi.org/10.1016/j.nucmedbio.2010.09.010
  26. Chong HS, Song HA, Ma X, Milenic DE, Brady ED, Lim S, Lee H, Baidoo K, Cheng D, Brechbiel MW. Novel bimodal bifunctional ligands for radioimmunotherapy and targeted MRI. Bioconjug Chem 2008;19:1439-1447. https://doi.org/10.1021/bc800050x
  27. Hoffend J, Mier W, Schuhmacher J, Schmidt K, Dimitrakopoulou- Strauss A, Strauss LG, Eisenhut M, Kinscherf R, Haberkorn U. Gallium-68-DOTA-albumin as a PET blood-pool marker: experimental evaluation in vivo. Nucl Med Biol 2005;32:287-292. https://doi.org/10.1016/j.nucmedbio.2005.01.002
  28. Sabatino G, Chinol M, Paganelli G, Papi S, Chelli M, Leone G, Papini AM, De Luca A, Ginanneschi M. A new biotin derivative- DOTA conjugate as a candidate for pretargeted diagnosis and therapy of tumors. J Med Chem 2003;46:3170-3173. https://doi.org/10.1021/jm030789z
  29. Tanaka K, Masuyama T, Hasegawa K, Tahara T, Mizuma H, Wada Y, Watanabe Y, Fukase K. A submicrogram-scale protocol for biomolecule- based PET imaging by rapid 6pi-azaelectrocyclization: visualization of sialic acid dependent circulatory residence of glycoproteins. Angew Chem Int Ed Eng 2008;47:102-105. https://doi.org/10.1002/anie.200702989
  30. Kung HF, Liu BL, Mankoff D, Kung MP, Billings JJ, Francesconi L, Alavi A. A new myocardial imaging agent: synthesis, characterization, and biodistribution of gallium-68-BAT-TECH. J Nucl Med 1990;31:1635-1640.
  31. Tsang BW, Mathias CJ, Fanwick PE, Green MA. Structure-distribution relationships for metal-labeled myocardial imaging agents: comparison of a series of cationic gallium (III) complexes with hexadentate bis(salicylaldimine) ligands. J Med Chem 1994;37:4400-4406. https://doi.org/10.1021/jm00051a018
  32. Tsang BW, Mathias CJ, Green MA. A gallium-68 radiopharmaceutical that is retained in myocardium: $^{68}Ga$[(4,6-MeO2sal) 2BAPEN]+. J Nucl Med 1993;34:1127-1131.
  33. Fichna J, Janecka A. Synthesis of target-specific radiolabeled peptides for diagnostic imaging. Bioconjug Chem 2003;14:3-17. https://doi.org/10.1021/bc025542f
  34. Janoki GA, Harwig JF, Chanachai W, Wolf W. [$^{67}Ga$]desferrioxamine-- HSA: synthesis of chelon protein conjugates using carbodiimide as a coupling agent. Int J Appl Radiat Isot 1983;34:871-877. https://doi.org/10.1016/0020-708X(83)90145-X
  35. Koizumi M, Endo K, Kunimatsu M, Sakahara H, Nakashima T, Kawamura Y, Watanabe Y, Ohmomo Y, Arano Y, Yokoyama A, et al. Preparation of $^{67}Ga$-labeled antibodies using deferoxamine as a bifunctional chelate. An improved method. J Immunol Method 1987;104:93-102. https://doi.org/10.1016/0022-1759(87)90492-3
  36. Mathias CJ, Sun YZ, Welch MJ, Connett JM, Philpott GW, Martell AE. N,N'-bis(2-hydroxybenzyl)-1-(4-bromoacetamidobenzyl)-1,2 -ethylenediamine-N,N'-diacetic acid: a new bifunctional chelate for radiolabeling antibodies. Bioconjug Chem 1990;1:204-211. https://doi.org/10.1021/bc00003a005
  37. Wagner SJ, Welch MJ. Gallium-68 labeling of albumin and albumin microspheres. J Nucl Med 1979;20:428-433.
  38. Koop B, Reske Sven N, Neumaier B. Labelling of a monoclonal antibody with $^{68}Ga$ using three DTPA-based bifunctional ligands and their in vitro evaluation for application in radioimmunotherapy. Radiochim Acta 2007. p. 39.
  39. Broan CJ, Cox JPL, Craig AS, Kataky R, Parker D, Harrison A, et al. Structure and solution stability of indium and gallium complexes of 1,4,7-triazacyclononanetriacetate and of yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligands: kinetically stable complexes for use in imaging and radioimmunotherapy. X-Ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid. J Chem Soc Perkin Trans 2 1991;(1):87-99.
  40. Liu S, Edwards DS. Synthesis and characterization of two $^{111}In$labeled DTPA-peptide conjugates. Bioconjug Chem 2001;12: 630-634.
  41. Chaves S, Mendonça AC, Marques SM, Prata MI, Santos AC, Martins AF, Geraldes CF, Santos MA. A gallium complex with a new tripodal tris-hydroxypyridinone for potential nuclear diagnostic imaging: solution and in vivo studies of $^{67}Ga$-labeled species. J Inorg Biochem 2011;105:31-38. https://doi.org/10.1016/j.jinorgbio.2010.09.012
  42. Chong HS, Garmestani K, Ma D, Milenic DE, Overstreet T, Brechbiel MW. Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. J Med Chem 2002;45:3458-3464. https://doi.org/10.1021/jm0200759
  43. Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC. Synthesis of< sup> 68 Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg Med Chem 2011;19:2176-2181. https://doi.org/10.1016/j.bmc.2011.02.041
  44. Mueller D, Klette I, Baum RP, Gottschaldt M, Schultz MK, Breeman WA. Simplified NaCl based $^{68}Ga$ concentration and labeling procedure for rapid synthesis of $^{68}Ga$ radiopharmaceuticals in high radiochemical purity. Bioconjug Chem 2012;23:1712-1717. https://doi.org/10.1021/bc300103t
  45. Clarke ET, Martell AE. Stabilities of the Fe(III), Ga(III) and In(III) chelates of N,N′,N″-triazacyclononanetriacetic acid. Inorg Chim Acta 1991;181:273-280. https://doi.org/10.1016/S0020-1693(00)86821-8
  46. Prata M, Santos A, Geraldes C, De Lima J. Characterisation of $^{67}Ga^{3+}$3+ complexes of triaza macrocyclic ligands: biodistribution and clearance studies. Nucl Med Biol 1999;26:707-710. https://doi.org/10.1016/S0969-8051(99)00041-4
  47. Prata M, Santos A, Geraldes C, De Lima J. Structural and in vivo studies of metal chelates of Ga(III) relevant to biomedical imaging. J Inorg Biochem 2000;79:359-363. https://doi.org/10.1016/S0162-0134(99)00232-9
  48. Andre JP, Maecke HR, Zehnder M, Macko L, Akyel KG. 1, 4, 7-Triazacyclononane-1-succinic acid-4, 7-diacetic acid (NODASA): a new bifunctional chelator for radio gallium-labelling of biomolecules. Chem Commun 1998:1301-1302.
  49. Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, Reubi JC, Macke HR. NODAGATOC, a new chelator- coupled somatostatin analogue labeled with [$^{67/68}Ga$] and [$^{111}In$] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 2002;13:530-541. https://doi.org/10.1021/bc010074f
  50. Simecek J, Notni J, Kapp TG, Kessler H, Wester HJ. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of $^{68}Ga$-NOPO-c(RGDfK). Mol Pharm 2014;11:1687-1695. https://doi.org/10.1021/mp5000746
  51. Notni J, Hermann P, Havlícková J, Kotek J, Kubícek V, Plutnar J, Loktionova N, Riss PJ, Rosch F, Lukes I. A triazacyclononanebased bifunctional phosphinate ligand for the preparation of multimeric $^{68}Ga$ tracers for positron emission tomography. Chemistry 2010;16:7174-7185. https://doi.org/10.1002/chem.200903281
  52. Notni J, Pohle K, Wester HJ. Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of $^{68}Ga$-TRAP (RGD)3. Nucl Med Biol 2013;40:33-41. https://doi.org/10.1016/j.nucmedbio.2012.08.006
  53. Notni J, Simecek J, Hermann P, Wester HJ. TRAP, a Powerful and Versatile Framework for Gallium‐68 Radiopharmaceuticals. Chem Eur J 2011;17:14718-14722.
  54. Seelam SR, Lee JY, Lee YS, Hong MK, Kim YJ, Banka VK, Lee DS, Chung JK, Jeong JM. Development of $^{68}Ga$-labeled multivalent nitroimidazole derivatives for hypoxia imaging. Bioorg Med Chem 2015;23:7743-7750. https://doi.org/10.1016/j.bmc.2015.11.024
  55. Singh AN, Liu W, Hao G, Kumar A, Gupta A, Öz OK, Hsieh JT, Sun X. Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency. Bioconjug Chem 2011;22: 1650-1662. https://doi.org/10.1021/bc200227d
  56. Guerra Gomez FL, Uehara T, Rokugawa T, Higaki Y, Suzuki H, Hanaoka H, Akizawa H, Arano Y. Synthesis and Evaluation of Diastereoisomers of 1, 4, 7-Triazacyclononane-1, 4, 7-tris-(glutaric acid)(NOTGA) for Multimeric Radiopharmaceuticals of Gallium. Bioconjug Chem 2012;23:2229-2238. https://doi.org/10.1021/bc300340g
  57. Blom E, Langstrom B, Velikyan I. $^{68}Ga$-labeling of biotin analogues and their characterization. Bioconjug Chem 2009;20: 1146-1151.
  58. Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M, Virgolini I, Wester HJ, Haubner R. $^{68}Ga$- and $^{111}In$labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2008;35:1507-1515. https://doi.org/10.1007/s00259-008-0757-6
  59. Griffiths GL, Chang CH, McBride WJ, Rossi EA, Sheerin A, Tejada GR, Karacay H, Sharkey RM, Horak ID, Hansen HJ, Goldenberg DM. Reagents and methods for PET using bispecific antibody pretargeting and $^{68}Ga$-radiolabeled bivalent hapten-peptide- chelate conjugates. J Nucl Med 2004;45:30-39.
  60. Ren G, Zhang R, Liu Z, Webster JM, Miao Z, Gambhir SS, Syud FA, Cheng Z. A 2-helix small protein labeled with $^{68}Ga$ for PET imaging of HER2 expression. J Nucl Med 2009;50:1492-1499. https://doi.org/10.2967/jnumed.109.064287
  61. Velikyan I, Beyer GJ, Langstrom B. Microwave-supported preparation of $^{68}Ga$ bioconjugates with high specific radioactivity. Bioconjug Chem 2004;15:554-560. https://doi.org/10.1021/bc030078f
  62. Ferreira CL, Yapp DT, Mandel D, Gill RK, Boros E, Wong MQ, et al. $^{68}Ga$ small peptide imaging: comparison of NOTA and PCTA. Bioconjug Chem 2012;23:2239-2246. https://doi.org/10.1021/bc300348d
  63. Niu W, Wong Edward H, Weisman Gary R, Peng Y, Anderson Carolyn J, Zakharov Lev N, et al. Structural and dynamic studies of zinc, gallium, and cadmium complexes of a dicarboxylate pendant-armed cross-bridged cyclen. European J Inorganic Chemistry 2004;(16):3310-3315.
  64. Ferreira CL, Lamsa E, Woods M, Duan Y, Fernando P, Bensimon C, Kordos M, Guenther K, Jurek P, Kiefer GE. Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals. Bioconjug Chem 2010;21:531-536. https://doi.org/10.1021/bc900443a
  65. Knetsch PA, Petrik M, Rangger C, Seidel G, Pietzsch H-J, Virgolini I, Decristoforo C, Haubner R. [$^{68}Ga$]NS3-RGD and [$^{68}Ga$] Oxo-DO3A-RGD for imaging ${\alpha}$v${\beta}$3 integrin expression: synthesis, evaluation, and comparison. Nucl Med Biol 2013;40: 65-72. https://doi.org/10.1016/j.nucmedbio.2012.09.006
  66. Shetty D, Jeong JM, Ju CH, Lee YS, Jeong SY, Choi JY, Yang BY, Lee DS, Chung JK, Lee MC. Synthesis of novel< sup> 68 Ga-labeled amino acid derivatives for positron emission tomography of cancer cells. Nucl Med Biol 2010;37:893-902. https://doi.org/10.1016/j.nucmedbio.2010.06.003
  67. Simecek J, Hermann P, Havlickova J, Herdtweck E, Kapp TG, Engelbogen N, et al. A cyclen-based tetraphosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 2013;19:7748-7757. https://doi.org/10.1002/chem.201300338
  68. Ma MT, Neels OC, Denoyer D, Roselt P, Karas JA, Scanlon DB, White JM, Hicks RJ, Donnelly PS. Gallium-68 complex of a macrobicyclic cage amine chelator tethered to two integrin-targeting peptides for diagnostic tumor imaging. Bioconjug Chem 2011; 22:2093-2103. https://doi.org/10.1021/bc200319q
  69. Ma MT, Donnelly PS. Peptide targeted copper-64 radiopharmaceuticals. Curr Topic Med Chem 2011;11:500-520. https://doi.org/10.2174/156802611794785172
  70. Ma MT, Karas JA, White JM, Scanlon D, Donnelly PS. A new bifunctional chelator for copper radiopharmaceuticals: a cage amine ligand with a carboxylate functional group for conjugation to peptides. Chem Commun 2009:3237-3239.
  71. Cai H, Fissekis J, Conti PS. Synthesis of a novel bifunctional chelator AmBaSar based on sarcophagine for peptide conjugation and $^{64}Cu$ radiolabelling. Dalton Trans 2009;(27):5395-6400.
  72. Terova O. Synthesis, characterization and inertness studies of gallium (III) and indium (III) complexes of dicarboxymethyl pendant- armed cross-bridged cyclam: University of New Hampshire;2008.
  73. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chem Rev 2010;110: 2858-2902. https://doi.org/10.1021/cr900325h
  74. Manzoni L, Belvisi L, Arosio D, Bartolomeo MP, Bianchi A, Brioschi C, Buonsanti F, Cabella C, Casagrande C, Civera M, De Matteo M, Fugazza L, Lattuada L, Maisano F, Miragoli L, Neira C, Pilkington-Miksa M, Scolastico C. Synthesis of Gd and $^{68}Ga$ complexes in conjugation with a conformationally optimized RGD sequence as potential MRI and PET tumor-imaging probes. Chem Med Chem 2012;7:1084-1093. https://doi.org/10.1002/cmdc.201200043
  75. Seemann J, Waldron BP, Roesch F, Parker D. Approaching 'Kit-Type' Labelling with $^{68}Ga$: The DATA Chelators. Chem Med Chem 2015;10:1019-1026. https://doi.org/10.1002/cmdc.201500092
  76. Gugliotta G, Botta M, Tei L. AAZTA-based bifunctional chelating agents for the synthesis of multimeric/dendrimeric MRI contrast agents. Org Biomol Chem 2010;8:4569-4574. https://doi.org/10.1039/c0ob00096e
  77. Knetsch PA, Zhai C, Rangger C, Blatzer M, Haas H, Kaeopookum P, Haubner R, Decristoforo C. [$^{68}Ga$]FSC-(RGD)3 a trimeric RGD peptide for imaging alphavbeta3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl Med Biol 2015;42:115-122. https://doi.org/10.1016/j.nucmedbio.2014.10.001
  78. Arrowsmith RL, Waghorn PA, Jones MW, Bauman A, Brayshaw SK, Hu Z, Kociok-Kohn G, Mindt TL, Tyrrell RM, Botchway SW, Dilworth JR, Pascu SI. Fluorescent gallium and indium bis(thiosemicarbazonates) and their radiolabelled analogues: Synthesis, structures and cellular confocal fluorescence imaging investigations. Dalton Trans 2011;40:6238-6252. https://doi.org/10.1039/c1dt10126a
  79. Paterson BM, Karas JA, Scanlon DB, White JM, Donnelly PS. Versatile New Bis(thiosemicarbazone) Bifunctional Chelators: Synthesis, Conjugation to Bombesin(7-14)-NH2, and Copper-64 Radiolabeling. Inorg Chem 2010;49:1884-1893. https://doi.org/10.1021/ic902204e
  80. Hueting R, Christlieb M, Dilworth JR, García Garayoa E, Gouverneur V, Jones MW, Maes V, Schibli R, Sun X, Tourwe DA. Bis(thiosemicarbazones) as bifunctional chelators for the room temperature 64-copper labeling of peptides. Dalton Trans 2010; 39:3620-3632. https://doi.org/10.1039/b925128f
  81. Burke BP, Clemente GS, Archibald SJ. Recent advances in chelator design and labelling methodology for $^{68}Ga$ radiopharmaceuticals. J Label Comp Radiopharm 2014;57:239-243. https://doi.org/10.1002/jlcr.3146
  82. Behnam Azad B, Cho CF, Lewis JD, Luyt LG. Synthesis, radiometal labeling and in vitro evaluation of a targeted PPIX derivative. Appl Radiat Isot 2012;70:505-511. https://doi.org/10.1016/j.apradiso.2011.11.054
  83. Zoller F, Riss PJ, Montforts F-P, Kelleher DK, Eppard E, Rosch F. Radiolabelling and preliminary evaluation of $^{68}Ga$-tetrapyrrole derivatives as potential tracers for PET. Nucl Med Biol 2013;40: 280-288. https://doi.org/10.1016/j.nucmedbio.2012.11.006
  84. Zhou T, Neubert H, Liu DY, Liu ZD, Ma YM, Kong XL, Luo W, Mark S, Hider RC. Iron binding dendrimers: a novel approach for the treatment of haemochromatosis. J Med Chem 2006;49:4171-4182. https://doi.org/10.1021/jm0600949
  85. Berry DJ, Ma Y, Ballinger JR, Tavare R, Koers A, Sunassee K, Zhou T, Nawaz S, Mullen GE, Hider RC, Blower PJ. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chem Commun 2011;47:7068-7070. https://doi.org/10.1039/c1cc12123e
  86. Ma MT, Cullinane C, Imberti C, Baguna Torres J, Terry SYA, Roselt P, Hicks RJ, Blower PJ. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with $^{68}Ga^{3+}$. Bioconjug Chem 2016;27:309-318. https://doi.org/10.1021/acs.bioconjchem.5b00335
  87. Ma R, Motekaitis RJ, Martell AE. Stability of metal ion complexes of N, N′-bis (2-hydroxybenzyl) ethylenediamine-N, N′ -diacetic acid. Inorg Chim Acta 1994;224:151-155. https://doi.org/10.1016/0020-1693(94)04012-5
  88. Eder M, Krivoshein AV, Backer M, Backer JM, Haberkorn U, Eisenhut M. ScVEGF-PEG-HBED-CC and scVEGF-PEG-NOTA conjugates: comparison of easy-to-label recombinant proteins for [$^{68}Ga$]PET imaging of VEGF receptors in angiogenic vasculature. Nucl Med Biol 2010;37:405-412. https://doi.org/10.1016/j.nucmedbio.2010.02.001
  89. Boros E, Ferreira CL, Cawthray JF, Price EW, Patrick BO, Wester DW, Adam MJ, Orvig C. Acyclic Chelate with Ideal Properties for $^{68}Ga$ PET Imaging Agent Elaboration. J Am Chem Soc 2010; 132:15726-15733. https://doi.org/10.1021/ja106399h
  90. Boros E, Ferreira CL, Yapp DT, Gill RK, Price EW, Adam MJ, Orvig C. RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with $^{68}Ga$. Nucl Med Biol 2012;39:785-794. https://doi.org/10.1016/j.nucmedbio.2012.01.003
  91. Boros E, Cawthray JF, Ferreira CL, Patrick BO, Adam MJ, Orvig C. Evaluation of the H2dedpa Scaffold and its cRGDyK Conjugates for Labeling with $^{64}Cu$. Inorg Chem 2012;51:6279-6284. https://doi.org/10.1021/ic300482x
  92. Viguier R, Serratrice G, Dupraz A, Dupuy C. New Polypodal Polycarboxylic Ligands - Complexation of Rare-Earth Ions in Aqueous Solution. Eur J Inorg Chem 2001;(7):1789-1795.
  93. Green MA, Welch MJ, Huffman JC. Synthesis and crystallographic characterization of a gallium salicylaldimine complex of radiopharmaceutical interest. J Am Chem Soc 1984;106:3689-3691. https://doi.org/10.1021/ja00324a058
  94. Arslantas E, Smith-Jones Peter M, Ritter G, Schmidt Richard R. TAME-Hex A - A Novel Bifunctional Chelating Agent for Radioimmunoimaging. Eur J Org Chem 2004;2004:3979-3984.
  95. Maecke H, Andre Ji. $^{68}Ga$-PET radiopharmacy: a generator-based alternative to $^{18}F$-radiopharmacy. PET Chemistry: Springer; 2007. p. 215-42.
  96. Seifert S, Künstler JU, Schiller E, Pietzsch HJ, Pawelke B, Bergmann R, Spies H. Novel procedures for preparing $^{99m}Tc$(III) complexes with tetradentate/monodentate coordination of varying lipophilicity and adaptation to $^{188}Re$ analogues. Bioconjug Chem 2004;15:856-863. https://doi.org/10.1021/bc0300798
  97. Kunstler J-U, Bergmann R, Gniazdowska E, Kozminski P, Walther M, Pietzsch H-J. Impact of functionalized coligands on the pharmacokinetics of $^{99m}Tc$(III) '4 + 1' mixed-ligand complexes conjugated to bombesin. J Inorg Biochem 2011;105:1383-1390. https://doi.org/10.1016/j.jinorgbio.2011.07.002
  98. Velikyan I. Prospective of $^{68}Ga$-Radiopharmaceutical Development. Theranostics 2014;4:47-80. https://doi.org/10.7150/thno.7447
  99. Cho YH, Jeong J, Lee YS, Kim YJ, Yang BY, Lee YC, et al. Development of an automatic synthesis module for $^{68}Ga$ radiopharmaceutical and its application. J Nucl Med 2011;52(1_ MeetingAbstracts):2332.
  100. Zeng D, Desai AV, Ranganathan D, Wheeler TD, Kenis PJA, Reichert DE. Microfluidic radiolabeling of biomolecules with PET radiometals. Nucl Med Biol 2013;40:42-51. https://doi.org/10.1016/j.nucmedbio.2012.08.012
  101. Blom E, Koziorowski J. $^{68}Ga$-Autoclabeling of DOTA-TATE and DOTA-NOC. Appl Radiat Isot 2012;70:980-983. https://doi.org/10.1016/j.apradiso.2012.03.032
  102. Clarke ET, Martell AE. Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13-and 14-membered tetraazamacrocycles. Inorg Chim Acta 1991;190:37-46.
  103. Simecek J, Schulz M, Notni J, Plutnar J, Kubicek V, Havlickova J, Hermann P. Complexation of metal ions with TRAP (1, 4, 7-triazacyclononane phosphinic acid) ligands and 1, 4, 7-triazacyclononane- 1, 4, 7-triacetic acid: Phosphinate-containing ligands as unique chelators for trivalent gallium. Inorg Chem 2011;51:577-590.
  104. Maecke HR, Andre JP. $^{68}Ga$-PET radiopharmacy: A generatorbased alternative to $^{18}F$-radiopharmacy. Ernst Schering Res Found Workshop 2007;(62):215-242.
  105. Sun Y, Anderson CJ, Pajeau TS, Reichert DE, Hancock RD, Motekaitis RJ, Martell AE, Welch MJ. Indium (III) and gallium (III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, and in vivo behavior. J Med Chem 1996;39:458-470. https://doi.org/10.1021/jm9505977
  106. Eder M, Neels O, Muller M, Bauder-Wust U, Remde Y, Schafer M, Hennrich U, Eisenhut M, Afshar-Oromieh A, Haberkorn U, Kopka K. Novel Preclinical and Radiopharmaceutical Aspects of [$^{68}Ga$]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals (Basel) 2014;7:779-796. https://doi.org/10.3390/ph7070779
  107. Bartholoma MD, Louie AS, Valliant JF, Zubieta J. Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev 2010;110:2903-2920. https://doi.org/10.1021/cr1000755
  108. Motekaitis RJ, Martell AE, Koch SA, Hwang, Quarless DA, Welch MJ. The Gallium(III) and Indium(III) Complexes of Tris(2-mercaptobenzyl) amine and Tris(2-hydroxybenzyl)amine. Inorg Chem 1998;37:5902-5911. https://doi.org/10.1021/ic980227j